Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Microbiol ; 11: 514, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32328039

RESUMO

Viable pathogenic bacteria are major biohazards that pose a significant threat to food safety. Despite the recent developments in detection platforms, multiplex identification of viable pathogens in food remains a major challenge. A novel strategy is developed through direct metatranscriptome RNA-seq and multiplex RT-PCR amplicon sequencing on Nanopore MinION to achieve real-time multiplex identification of viable pathogens in food. Specifically, this study reports an optimized universal Nanopore sample extraction and library preparation protocol applicable to both Gram-positive and Gram-negative pathogenic bacteria, demonstrated using a cocktail culture of E. coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes, which were selected based on their impact on economic loss or prevalence in recent outbreaks. Further evaluation and validation confirmed the accuracy of direct metatranscriptome RNA-seq and multiplex RT-PCR amplicon sequencing using Sanger sequencing and selective media. The study also included a comparison of different bioinformatic pipelines for metatranscriptomic and amplicon genomic analysis. MEGAN without rRNA mapping showed the highest accuracy of multiplex identification using the metatranscriptomic data. EPI2ME also demonstrated high accuracy using multiplex RT-PCR amplicon sequencing. In addition, a systemic comparison was drawn between Nanopore sequencing of the direct metatranscriptome RNA-seq and RT-PCR amplicons. Both methods are comparable in accuracy and time. Nanopore sequencing of RT-PCR amplicons has higher sensitivity, but Nanopore metatranscriptome sequencing excels in read length and dealing with complex microbiome and non-bacterial transcriptome backgrounds.

2.
Bioengineering (Basel) ; 5(4)2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30304810

RESUMO

Glioblastoma Multiforme (GBM) is a common primary brain cancer with a poor prognosis and a median survival of less than 14 months. Current modes of treatment are associated with deleterious side effects that reduce the life span of the patients. Nanomedicine enables site-specific delivery of active pharmaceutical ingredients and facilitates entrapment inside the tumor. Polo-like kinase 1 (PLK-1) inhibitors have shown promising results in tumor cells. GSK461364A (GSK) is one such targeted inhibitor with reported toxicity issues in phase 1 clinical trials. We have demonstrated in our study that the action of GSK is time dependent across all concentrations. There is a distinct 15-20% decrease in cell viability via apoptosis in U87-MG cells dosed with GSK at low concentrations (within the nanomolar and lower micromolar range) compared to higher concentrations of the drug. Additionally, we have confirmed that PLGA-PEG nanoparticles (NPs) containing GSK have shown significant reduction in cell viability of tumor cells compared to their free equivalents. Thus, this polymeric nanoconstruct encapsulating GSK can be effective even at low concentrations and could improve the effectiveness of the drug while reducing side effects at the lower effective dose. This is the first study to report a PLK-1 inhibitor (GSK) encapsulated in a nanocarrier for cancer applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA