Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Phys Chem A ; 128(40): 8615-8627, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39344976

RESUMO

In this work, we investigate the possibility of improving multireference-driven coupled cluster (CC) approaches with an algorithm that iteratively combines complete active space (CAS) calculations with tailored CC and externally corrected CC. This is accomplished by establishing a feedback loop between the CC and CAS parts of a calculation through a similarity transformation of the Hamiltonian with those CC amplitudes that are not encompassed by the active space. We denote this approach as the complete active space iterative coupled cluster (CASiCC) ansatz. We investigate its efficiency and accuracy in the singles and doubles approximation by studying the prototypical molecules H4, H8, H2O, and N2. Our results demonstrate that CASiCC systematically improves on the single-reference CCSD and the externally corrected CCSD methods across entire potential energy curves while retaining modest computational costs. However, the tailored coupled cluster method shows superior performance in the strong correlation regime, suggesting that its accuracy is based on error compensation. We find that the iterative versions of externally corrected and tailored coupled cluster methods converge to the same results.

2.
J Chem Phys ; 161(14)2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39387408

RESUMO

We develop a surface for the electric dipole moment of three interacting helium atoms and use it with state-of-the-art potential and polarizability surfaces to compute the third dielectric virial coefficient, Cɛ, for both 4He and 3He isotopes. Our results agree with previously published data computed using an approximated form for the three-body polarizability and are extended to the low-temperature regime by including exchange effects. In addition, the uncertainty of Cɛ is rigorously determined for the first time by propagating the uncertainties of the potential and polarizability surfaces; this uncertainty is much larger than the contribution from the dipole-moment surface to Cɛ. Our results compare reasonably well with the limited experimental data. The first-principles values of Cϵ computed in this work will enhance the accuracy of primary temperature and pressure metrology based on measurements of the dielectric constant of helium.

3.
J Chem Phys ; 156(6): 064103, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35168355

RESUMO

We consider the rank-reduced coupled-cluster theory with single and double (RR-CCSD) excitations introduced recently [Parrish et al., J. Chem. Phys. 150, 164118 (2019)]. The main feature of this method is the decomposed form of doubly excited amplitudes, which are expanded in the basis of largest magnitude eigenvectors of MP2 or MP3 amplitudes. This approach enables a substantial compression of amplitudes with only minor loss of accuracy. However, the formal scaling of the computational costs with the system size (N) is unaffected in comparison with the conventional CCSD theory (∝N6) due to the presence of some terms quadratic in amplitudes, which do not naturally factorize to a simpler form even within the rank-reduced framework. We show how to solve this problem, exploiting the fact that their effective rank increases only linearly with the system size. We provide a systematic way to approximate the problematic terms using the singular value decomposition and reduce the scaling of the RR-CCSD iterations down to the level of N5. This is combined with an iterative method of finding dominant eigenpairs of MP2 or MP3 amplitudes, which eliminates the necessity to perform the complete diagonalization, making the cost of this step proportional to the fifth power of the system size, as well. Next, we consider the evaluation of perturbative corrections to CCSD energies resulting from triply excited configurations. The triply excited amplitudes present in the CCSD(T) method are decomposed to the Tucker-3 format using the higher-order orthogonal iteration procedure. This enables us to compute the energy correction due to triple excitations non-iteratively with N6 cost. The accuracy of the resulting rank-reduced CCSD(T) method is studied for both total and relative correlation energies of a diverse set of molecules. Accuracy levels better than 99.9% can be achieved with a substantial reduction of the computational costs. Concerning the computational timings, the break-even point between the rank-reduced and conventional CCSD implementations occurs for systems with about 30-40 active electrons.

4.
J Chem Phys ; 154(9): 094111, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33685145

RESUMO

A precise understanding of mechanisms governing the dynamics of electrons in atoms and molecules subjected to intense laser fields has a key importance for the description of attosecond processes such as the high-harmonic generation and ionization. From the theoretical point of view, this is still a challenging task, as new approaches to solve the time-dependent Schrödinger equation with both good accuracy and efficiency are still emerging. Until recently, the purely numerical methods of real-time propagation of the wavefunction using finite grids have been frequently and successfully used to capture the electron dynamics in small one- or two-electron systems. However, as the main focus of attoscience shifts toward many-electron systems, such techniques are no longer effective and need to be replaced by more approximate but computationally efficient ones. In this paper, we explore the increasingly popular method of expanding the wavefunction of the examined system into a linear combination of atomic orbitals and present a novel systematic scheme for constructing an optimal Gaussian basis set suitable for the description of excited and continuum atomic or molecular states. We analyze the performance of the proposed basis sets by carrying out a series of time-dependent configuration interaction calculations for the hydrogen atom in fields of intensity varying from 5 × 1013 W/cm2 to 5 × 1014 W/cm2. We also compare the results with the data obtained using Gaussian basis sets proposed previously by other authors.

5.
J Chem Phys ; 152(4): 044104, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32007079

RESUMO

We present a simple method for a posteriori removal of a significant fraction of the density-fitting error from the calculated total coupled-cluster energies. The method treats the difference between the exact and density-fitted integrals as a perturbation, and simplified response-like equations allow us to calculate improved amplitudes and the corresponding energy correction. The proposed method is tested at the coupled-cluster singles and doubles level of theory for a diverse set of moderately-sized molecules. On average, error reductions by a factor of approximately 10 and 20 are observed in double-zeta and triple-zeta basis sets, respectively. Similar reductions are observed in calculations of interaction energies of several model complexes. The computational cost of the procedure is small in comparison with the preceding coupled-cluster iterations. The applicability of this method is not limited to the density-fitting approximation; in principle, it can be used in conjunction with an arbitrary decomposition scheme of the electron repulsion integrals.

6.
J Chem Phys ; 152(10): 104109, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32171219

RESUMO

The influence of QED effects (including one- and two-electron Lamb-shift, Araki-Sucher term, one-loop self-energy, and finite nuclear size correction) together with non-adiabatic effects on the rovibrational bound states of H3 + has been investigated. Non-adiabaticity is modeled by using geometry-dependent effective nuclear masses together with only one single potential energy surface. In conclusion, for rovibrational states below 20 000 cm-1, QED and relativistic effects do nearly compensate, and a potential energy surface based on Born-Oppenheimer energies and diagonal adiabatic corrections has nearly the same quality as the one including relativity with QED; the deviations between the two approaches for individual rovibrational states are mostly below 0.02 cm-1. The inclusion of non-adiabatic effects is important, and it reduces deviations from experiments mostly below 0.1 cm-1.

7.
Rep Prog Phys ; 82(11): 116001, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31226696

RESUMO

This paper has been prepared by the Symphony collaboration (University of Warsaw, Uniwersytet Jagiellonski, DESY/CNR and ICFO) on the occasion of the 25th anniversary of the 'simple man's models' which underlie most of the phenomena that occur when intense ultrashort laser pulses interact with matter. The phenomena in question include high-harmonic generation (HHG), above-threshold ionization (ATI), and non-sequential multielectron ionization (NSMI). 'Simple man's models' provide both an intuitive basis for understanding the numerical solutions of the time-dependent Schrödinger equation and the motivation for the powerful analytic approximations generally known as the strong field approximation (SFA). In this paper we first review the SFA in the form developed by us in the last 25 years. In this approach the SFA is a method to solve the TDSE, in which the non-perturbative interactions are described by including continuum-continuum interactions in a systematic perturbation-like theory. In this review we focus on recent applications of the SFA to HHG, ATI and NSMI from multi-electron atoms and from multi-atom molecules. The main novel part of the presented theory concerns generalizations of the SFA to: (i) time-dependent treatment of two-electron atoms, allowing for studies of an interplay between electron impact ionization and resonant excitation with subsequent ionization; (ii) time-dependent treatment in the single active electron approximation of 'large' molecules and targets which are themselves undergoing dynamics during the HHG or ATI processes. In particular, we formulate the general expressions for the case of arbitrary molecules, combining input from quantum chemistry and quantum dynamics. We formulate also theory of time-dependent separable molecular potentials to model analytically the dynamics of realistic electronic wave packets for molecules in strong laser fields. We dedicate this work to the memory of Bertrand Carré, who passed away in March 2018 at the age of 60.

8.
J Comput Chem ; 40(12): 1319-1332, 2019 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-30790301

RESUMO

We demonstrate a novel technique to obtain singular-value decomposition (SVD) of the coupled-cluster triple excitations amplitudes, t ijk abc . The presented method is based on the Golub-Kahan bidiagonalization strategy and does not require t ijk abc to be stored. The computational cost of the method is comparable to several coupled cluster singles and doubles (CCSD) iterations. Moreover, the number of singular vectors to be found can be predetermined by the user and only those singular vectors which correspond to the largest singular values are obtained at convergence. We show how the subspace of the most important singular vectors obtained from an approximate triple amplitudes tensor can be used to solve equations of the CC3 method. The new method is tested for a set of small and medium-sized molecular systems in basis sets ranging in quality from double- to quintuple-zeta. It is found that to reach the chemical accuracy (≈1 kJ/mol) in the total CC3 energies as little as 5 - 15% of SVD vectors are required. This corresponds to the compression of the t ijk abc amplitudes by a factor of about 0.0001 - 0.005. Significant savings are obtained also in calculation of interaction energies or rotational barriers, as well as in bond-breaking processes. © 2019 Wiley Periodicals, Inc.

9.
J Chem Phys ; 146(3): 034108, 2017 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-28109234

RESUMO

We introduce a new method for the computation of the transition moments between the excited electronic states based on the expectation value formalism of the coupled cluster theory [B. Jeziorski and R. Moszynski, Int. J. Quantum Chem. 48, 161 (1993)]. The working expressions of the new method solely employ the coupled cluster operator T and an auxiliary operator S that is expressed as a finite commutator expansion in terms of T and T†. In the approximation adopted in the present paper, the cluster expansion is limited to single, double, and linear triple excitations. The computed dipole transition probabilities for the singlet-singlet and triplet-triplet transitions in alkali earth atoms agree well with the available theoretical and experimental data. In contrast to the existing coupled cluster response theory, the matrix elements obtained by using our approach satisfy the Hermitian symmetry even if the excitations in the cluster operator are truncated, but the operator S is exact. The Hermitian symmetry is slightly broken if the commutator series for the operator S are truncated. As a part of the numerical evidence for the new method, we report calculations of the transition moments between the excited triplet states which have not yet been reported in the literature within the coupled cluster theory. Slater-type basis sets constructed according to the correlation-consistency principle are used in our calculations.

10.
J Chem Phys ; 142(12): 124102, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25833560

RESUMO

Explicitly correlated quantum chemical calculations require calculations of five types of two-electron integrals beyond the standard electron repulsion integrals. We present a novel scheme, which utilises general ideas of the McMurchie-Davidson technique, to compute these integrals when the so-called "range-separated" correlation factor is used. This correlation factor combines the well-known short range behaviour resulting from the electronic cusp condition, with the exact long-range asymptotics derived for the helium atom [Lesiuk, Jeziorski, and Moszynski, J. Chem. Phys. 139, 134102 (2013)]. Almost all steps of the presented procedure are formulated recursively, so that an efficient implementation and control of the precision are possible. Additionally, the present formulation is very flexible and general, and it allows for use of an arbitrary correlation factor in the electronic structure calculations with minor or no changes.

11.
J Chem Theory Comput ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39347964

RESUMO

In the present work, we report an implementation of the rank-reduced equation-of-motion coupled cluster method with approximate triple excitations (RR-EOM-CC3). The proposed variant relies on tensor decomposition techniques in order to alleviate the high cost of computing and manipulating the triply excited amplitudes. In the RR-EOM-CC3 method, both ground-state and excited-state triple-excitation amplitudes are compressed according to the Tucker-3 format. This enables factorization of the working equations such that the formal scaling of the method is reduced to N6, where N is the system size. An additional advantage of our method is the fact that the accuracy can be strictly controlled by proper choice of two parameters defining sizes of triple-excitation subspaces in the Tucker decomposition for the ground and excited states. Optimal strategies of selecting these parameters are discussed. The developed method has been tested in a series of calculations of electronic excitation energies and compared to its canonical EOM-CC3 counterpart. Errors several times smaller than the inherent error of the canonical EOM-CC3 method (in comparison to FCI) are straightforward to achieve. This conclusion holds both for valence states dominated by single excitations and for states with pronounced doubly excited character. Taking advantage of the decreased scaling, we demonstrate substantial computational costs reductions (in comparison with the canonical EOM-CC3) in the case of two large molecules - l-proline and heptazine. This illustrates the usefulness of the RR-EOM-CC3 method for accurate determination of excitation energies of large molecules.

12.
J Chem Phys ; 138(7): 074107, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23444997

RESUMO

Considering calculations of the molecular electrostatic potential at the atomic sites (MEP@AS) in the presence of effective core potentials (ECP), we found that the consequent use of the definition of MEP@AS based on the energy derivative with respect to nuclear charge leads to a formula that differs by one term from the result of simple application of Coulomb's law. We have developed a general method to analytically treat derivatives of ECP with respect to nuclear charge. Benchmarking calculations performed on a set of simple molecules show that our formula leads to a systematic decrease in the error connected with the introduction of ECP when compared to all-electron results. Because of a straightforward implementation and relatively low costs of the developed procedure we suggest to use it by default.

13.
J Chem Phys ; 139(13): 134102, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24116547

RESUMO

In currently most popular explicitly correlated electronic structure theories, the dependence of the wave function on the interelectronic distance rij is built via the correlation factor f(r(ij)). While the short-distance behavior of this factor is well understood, little is known about the form of f(r(ij)) at large r(ij). In this work, we investigate the optimal form of f(r12) on the example of the helium atom and helium-like ions and several well-motivated models of the wave function. Using the Rayleigh-Ritz variational principle, we derive a differential equation for f(r12) and solve it using numerical propagation or analytic asymptotic expansion techniques. We found that for every model under consideration, f(r12) behaves at large r(ij) as r12(ρ)e(Br12) and obtained simple analytic expressions for the system dependent values of ρ and B. For the ground state of the helium-like ions, the value of B is positive, so that f(r12) diverges as r12 tends to infinity. The numerical propagation confirms this result. When the Hartree-Fock orbitals, multiplied by the correlation factor, are expanded in terms of Slater functions r(n)e(-ßr), n = 0,...,N, the numerical propagation reveals a minimum in f(r12) with depth increasing with N. For the lowest triplet state, B is negative. Employing our analytical findings, we propose a new "range-separated" form of the correlation factor with the short- and long-range r12 regimes approximated by appropriate asymptotic formulas connected by a switching function. Exemplary calculations show that this new form of f(r12) performs somewhat better than the correlation factors used thus far in the standard R12 or F12 theories.

14.
J Chem Phys ; 136(3): 034104, 2012 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-22280741

RESUMO

We present an analytical approach to treat higher order derivatives of Hartree-Fock (HF) and Kohn-Sham (KS) density functional theory energy in the Born-Oppenheimer approximation with respect to the nuclear charge distribution (so-called alchemical derivatives). Modified coupled perturbed self-consistent field theory is used to calculate molecular systems response to the applied perturbation. Working equations for the second and the third derivatives of HF/KS energy are derived. Similarly, analytical forms of the first and second derivatives of orbital energies are reported. The second derivative of Kohn-Sham energy and up to the third derivative of Hartree-Fock energy with respect to the nuclear charge distribution were calculated. Some issues of practical calculations, in particular the dependence of the basis set and Becke weighting functions on the perturbation, are considered. For selected series of isoelectronic molecules values of available alchemical derivatives were computed and Taylor series expansion was used to predict energies of the "surrounding" molecules. Predicted values of energies are in unexpectedly good agreement with the ones computed using HF/KS methods. Presented method allows one to predict orbital energies with the error less than 1% or even smaller for valence orbitals.


Assuntos
Teoria Quântica
15.
J Chem Phys ; 137(20): 204121, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23205995

RESUMO

We present a physically motivated correlation functional belonging to the meta-generalized gradient approximation (meta-GGA) rung, which can be supplemented with long-range dispersion corrections without introducing double-counting of correlation contributions. The functional is derived by the method of constraint satisfaction, starting from an analytical expression for a real-space spin-resolved correlation hole. The model contains a position-dependent function that controls the range of the interelectronic correlations described by the semilocal functional. With minimal empiricism, this function may be adjusted so that the correlation model blends with a specific dispersion correction describing long-range contributions. For a preliminary assessment, our functional has been combined with an atom-pairwise dispersion correction and full Hartree-Fock (HF)-like exchange. Despite the HF-exchange approximation, its predictions compare favorably with reference interaction energies in an extensive set of non-covalently bound dimers.

16.
J Chem Theory Comput ; 18(11): 6537-6556, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36314739

RESUMO

In this paper, we extend the rank-reduced coupled-cluster formalism to the calculation of non-iterative energy corrections due to quadruple excitations. There are two major components of the proposed formalism. The first is an approximate compression of the quadruple excitation amplitudes using the Tucker format. The second is a modified functional used for the evaluation of the corrections which gives exactly the same results for the exact amplitudes, but is less susceptible to errors resulting from the aforementioned compression. We show, both theoretically and numerically, that the computational cost of the proposed method scales as the seventh power of the system size. Using reference results for a set of small molecules, the method is calibrated to deliver relative accuracy of a few percent in energy corrections. To illustrate the potential of the theory, we calculate the isomerization energy of ortho/meta benzyne (C6H4) and the barrier height for the Cope rearrangement in bullvalene (C10H10). The method retains a near-black-box nature of the conventional coupled-cluster formalism and depends on only one additional parameter that controls the accuracy.


Assuntos
Teoria Quântica
17.
J Chem Theory Comput ; 18(7): 4203-4217, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35666238

RESUMO

In this work, we present the first implementation of the transcorrelated electronic Hamiltonian in an optimization procedure for matrix product states by the density matrix renormalization group (DMRG) algorithm. In the transcorrelation ansatz, the electronic Hamiltonian is similarity-transformed with a Jastrow factor to describe the cusp in the wave function at electron-electron coalescence. As a result, the wave function is easier to approximate accurately with the conventional expansion in terms of one-particle basis functions and Slater determinants. The transcorrelated Hamiltonian in first quantization comprises up to three-body interactions, which we deal with in the standard way by applying robust density fitting to two- and three-body integrals entering the second-quantized representation of this Hamiltonian. The lack of hermiticity of the transcorrelated Hamiltonian is taken care of along the lines of the first work on transcorrelated DMRG [ J. Chem. Phys. 2020, 153, 164115] by encoding it as a matrix product operator and optimizing the corresponding ground state wave function with imaginary-time time-dependent DMRG. We demonstrate our quantum chemical transcorrelated DMRG approach at the example of several atoms and first-row diatomic molecules. We show that transcorrelation improves the convergence rate to the complete basis set limit in comparison to conventional DMRG. Moreover, we study extensions of our approach that aim at reducing the cost of handling the matrix product operator representation of the transcorrelated Hamiltonian.

18.
Chemistry ; 17(45): 12713-21, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21956751

RESUMO

The first systematic theoretical and experimental studies of reaction systems involving ZnR(2) (R=Me, Et or tBu) with dibenzoyl (dbz) as a non-innocent ligand revealed that the character of the metal-bonded R group as well as the ratio of the reagents and the reaction temperature significantly modulate the reaction outcome. DFT calculations showed four stable minima for initial complexes formed between ZnR(2) and dbz and the most stable structure proved to be the 2:1 adduct; among the 1:1 adducts three structural isomers were found of which the most stable complex had the monodentate coordination mode and the chelate complex with the s-cis conformation of the dbz unit appeared to be the least stable form. Interestingly, the reaction involving ZnMe(2) did not lead to any alkylation product, whereas the employment of ZntBu(2) resulted in full conversion of dbz to the O-alkylated product [tBuZn{PhC(O)C(OtBu)Ph}] already at -20 °C. A more complicated system was revealed for the reaction of dbz with ZnEt(2). Treatment of a solution of dbz in toluene with one equivalent of ZnEt(2) at room temperature afforded a mixture of the O- and C-alkylated products [EtZn{PhC(O)C(OEt)Ph}] and [EtZn{OC(Ph)C(O)(Et)Ph}], respectively. The formation of the C-alkylated product was suppressed by decreasing the initial reaction temperature to -20 °C. Moreover, in the case of the dbz/ZnEt(2) system monitoring of the dbz conversion over the entire reaction course revealed a product inhibition effect, which highlights possible participation of multiple equilibria of different zinc alkoxide/ZnEt(2) aggregates. Diffusion NMR studies indicated that dbz forms an adduct with the O-alkylated product, which is a competent species for executing the inhibition of the alkylation event.

19.
J Chem Theory Comput ; 17(12): 7632-7647, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34860018

RESUMO

We introduce a non-iterative energy correction, added on top of the rank-reduced coupled-cluster method with single, double, and triple substitutions, that accounts for excitations excluded from the parent triple excitation subspace. The formula for the correction is derived by employing the coupled-cluster Lagrangian formalism, with an additional assumption that the parent excitation subspace is closed under the action of the Fock operator. Owing to the rank-reduced form of the triple excitation amplitudes tensor, the computational cost of evaluating the correction scales as N7, where N is the system size. The accuracy and computational efficiency of the proposed method is assessed for both total and relative correlation energies. We show that the non-iterative correction can fulfill two separate roles. If the accuracy level of a fraction of kJ/mol is sufficient for a given system, the correction significantly reduces the dimension of the parent triple excitation subspace needed in the iterative part of the calculations. Simultaneously, it enables reproducing the exact CCSDT results to an accuracy level below 0.1 kJ/mol, with a larger, yet still reasonable, dimension of the parent excitation subspace. This typically can be achieved at a computational cost only several times larger than required for the CCSD(T) method. The proposed method retains the black-box features of the single-reference coupled-cluster theory; the dimension of the parent excitation subspace remains the only additional parameter that has to be specified.

20.
J Chem Theory Comput ; 16(1): 453-467, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31715103

RESUMO

We report a complete implementation of the coupled-cluster method with single, double, and triple excitations (CCSDT) in which tensor decompositions are used to reduce scaling and overall computational costs. For the decomposition of the electron repulsion integrals the standard density fitting (or Cholesky decomposition) format is used. The coupled-cluster single and double amplitudes are treated conventionally, and for the triple amplitudes tensor we employ the Tucker-3 compression formula, tijkabc ≈ tXYZ UaiX UbjY UckZ. The auxiliary quantities UaiX come from singular value decomposition (SVD) of an approximate triple amplitudes tensor based on perturbation theory. The efficiency of the proposed method relies on an observation that the dimension of the "compressed" tensor tXYZ sufficient to deliver a constant relative accuracy of the correlation energy grows only linearly with the size of the system, N. This fact, combined with proper factorization of the coupled-cluster equations, leads to practically N6 scaling of the computational costs of the proposed method, as illustrated numerically for linear alkanes with increasing chain length. This constitutes a considerable improvement over the N8 scaling of the conventional (uncompressed) CCSDT theory. The accuracy of the proposed method is verified by benchmark calculations of total and relative energies for several small molecular systems and comparison with the exact CCSDT method. The accuracy levels of 1 kJ/mol are easily achievable with reasonable SVD subspace size, and even more demanding levels of accuracy can be reached with a considerable reduction of the computational costs. Extensions of the proposed method to include higher excitations are briefly discussed, along with possible strategies of reducing other residual errors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA