Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Biomacromolecules ; 18(9): 2767-2776, 2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28724292

RESUMO

Coating of colloidal lignin particles (CLPs), or lignin nanoparticles (LNPs), with proteins was evaluated in order to establish a safe, self-assembly mediated modification technique to tune their surface chemistry. Gelatin and poly- l-lysine formed the most pronounced protein corona on the CLP surface, as determined by dynamic light scattering (DLS) and zeta potential measurements. Spherical morphology of individual protein coated CLPs was confirmed by transmission electron (TEM) and atomic force (AFM) microscopy. A mechanistic adsorption study with several random coiled and globular model proteins was carried out using quartz crystal microbalance with dissipation monitoring (QCM-D). The three-dimensional (3D) protein fold structure and certain amino acid interactions were decisive for the protein adsorption on the lignin surface. The main driving forces for protein adsorption were electrostatic, hydrophobic, and van der Waals interactions, and hydrogen bonding. The relative contributions of these interactions were highly dependent on the ionic strength of the surrounding medium. Capillary electrophoresis (CE) and Fourier transform infrared spectroscopy (FTIR) provided further evidence of the adsorption-enhancing role of specific amino acid residues such as serine and proline. These results have high impact on the utilization of lignin as colloidal particles in biomedicine and biodegradable materials, as the protein corona enables tailoring of the CLP surface chemistry for intended applications.


Assuntos
Coloides/química , Conalbumina/química , Gelatina/química , Lignina/química , Nanopartículas/química , Adsorção , Ligação de Hidrogênio , Concentração Osmolar , Polilisina/química , Conformação Proteica
2.
Biomacromolecules ; 16(10): 3226-34, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26317622

RESUMO

Deposition of hydrophobic wood extractives and representative model compounds, on the surface of cellulose prior to enzymatic hydrolysis was found to either enhance or inhibit the action of cellulase enzymes. The effect of these compounds was correlated with their chemical structure, which may in part explain the differential effects observed between softwood and hardwood extractives. Specifically, the addition of sterol, enhanced enzymatic hydrolysis of microcrystalline cellulose by 54%, whereas the addition of a triglyceride could inhibit the hydrolysis by 49%. The effects of the different extractives' could be explained by considering their Hansen solubility parameters. The amphiphilic and/or hydrophobic character of model extractives was found to be the variable that affected the deposition of extractives on cellulose surfaces and the eventual adsorption of cellulolytic enzymes on it. The observed beneficial effects of extractives are likely related to a reduction in the irreversible binding of the enzymes on the cellulose surface.


Assuntos
Celulase/metabolismo , Celulose/metabolismo , Madeira , Adsorção , Colesterol/metabolismo , Hidrólise , Técnicas de Microbalança de Cristal de Quartzo , Especificidade por Substrato
3.
Bioresour Bioprocess ; 9(1): 71, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38647560

RESUMO

Sulphite addition during steam pretreatment of softwoods under acidic, neutral and alkaline conditions was assessed to try to minimize lignin condensation. Although pretreatment under neutral/alkaline conditions resulted in effective lignin sulphonation, non-uniform size reduction was observed. In contrast, acidic sulphite steam treatment at 210 °C for 10 min resulted in homogenous particle size reduction and water-insoluble component that was 62% carbohydrate and 33% lignin. This carbohydrate-rich substrate was readily hydrolyzed and fermented which indicated the lack of fermentation inhibitors in the steam-pretreated whole slurry. The use of high solid loading (25% w/v) resulted in a hydrolysis yield of 58% at an enzyme loading of 40 mg protein/g glucan and efficient fermentation (46.6 g/L of ethanol). This indicated that the addition of acidic sulphite at the steam pretreatment of softwoods improved both the enzymatic hydrolysis and fermentation of steam-pretreated whole slurries.

4.
Nanomaterials (Basel) ; 8(12)2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30513957

RESUMO

Lignin has interesting functionalities to be exploited in adhesives for medicine, foods and textiles. Nanoparticles (NPs) < 100 nm coated with poly (L-lysine), PL and poly(L-glutamic acid) PGA were prepared from the laccase treated lignin to coat nanocellulose fibrils (CNF) with heat. NPs ca. 300 nm were prepared, ß-casein coated and cross-linked with transglutaminase (Tgase) to agglutinate chamois. Size exclusion chromatography (SEC) and Fourier-transform infrared (FTIR) spectroscopy were used to characterize polymerized lignin, while zeta potential and dynamic light scattering (DLS) to ensure coating of colloidal lignin particles (CLPs). Protein adsorption on lignin was studied by quartz crystal microbalance (QCM). Atomic force microscopy (AFM) was exploited to examine interactions between different polymers and to image NPs with transmission electron microscopy (TEM). Tensile testing showed, when using CLPs for the adhesion, the stress improved ca. 10 and strain ca. 6 times compared to unmodified Kraft. For the ß-casein NPs, the values were 20 and 8, respectively, and for the ß-casein coated CLPs between these two cases. When NPs were dispersed in adhesive formulation, the increased Young's moduli confirmed significant improvement in the stiffness of the joints over the adhesive alone. Exploitation of lignin in nanoparticulate morphology is a potential method to prepare bionanomaterials for advanced applications.

5.
Enzyme Microb Technol ; 111: 48-56, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29421036

RESUMO

Cross-linked and decolorized lignin nanoparticles (LNPs) were prepared enzymatically and chemically from softwood Kraft lignin. Colloidal lignin particles (CLPs, ca. 200 nm) in a non-malodorous aqueous dispersion could be dried and redispersed in tetrahydrofuran (THF) or in water retaining their stability i.e. spherical shape and size. Two fungal laccases, Trametes hirsuta (ThL) and Melanocarpus albomyces (MaL) were used in the cross-linking reactions. Reactivity of ThL and MaL on Lignoboost™ lignin and LNPs was confirmed by high performance size exclusion chromatography (HPSEC) and oxygen consumption measurements with simultaneous detection of red-brown color due to the formation of quinones. Zeta potential measurements verified oxidation of LNPs via formation of surface-oriented carboxylic acid groups. Dynamic light scattering (DLS) revealed minor changes in the particle size distributions of LNPs after laccase catalyzed radicalization, indicating preferably covalent intraparticular cross-linking over polymerization. Changes in the surface morphology of laccase treated LNPs were imaged by atomic force (AFM) and transmission emission (TEM) microscopy. Furthermore, decolorization of LNPs without degradation was obtained using ultrasonication with H2O2 in alkaline reaction conditions. The research results have high impact for the utilization of Kraft lignin as nanosized colloidal particles in advanced bionanomaterial applications in medicine, foods and cosmetics including different sectors from chemical industry.


Assuntos
Materiais Biocompatíveis/metabolismo , Lignina/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Ascomicetos/enzimologia , Materiais Biocompatíveis/química , Coloides , Cor , Reagentes de Ligações Cruzadas , Proteínas Fúngicas/metabolismo , Lacase/metabolismo , Lignina/química , Nanopartículas/ultraestrutura , Nanotecnologia , Oxirredução , Trametes/enzimologia
6.
Carbohydr Polym ; 119: 44-52, 2015 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25563943

RESUMO

The analysis of native wood components by size-exclusion chromatography (SEC) is challenging. Isolation, derivatization and solubilization of wood polymers is required prior to the analysis. The present approach allowed the determination of molecular weight distributions of the carbohydrates and of lignin in native and processed woods, without preparative component isolation steps. For the first time a component selective SEC analysis of sawdust preparations was made possible by the combination of two selective derivatization methods, namely; ionic liquid assisted benzoylation of the carbohydrate fraction and acetobromination of the lignin in acetic acid media. These were optimized for wood samples. The developed method was thus used to examine changes in softwood samples after degradative mechanical and/or chemical treatments, such as ball milling, steam explosion, green liquor pulping, and chemical oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). The methodology can also be applied to examine changes in molecular weight and lignin-carbohydrate linkages that occur during wood-based biorefinery operations, such as pretreatments, and enzymatic saccharification.


Assuntos
Benzoquinonas/química , Madeira/química , Benzeno/química , Carboidratos/química , Cromatografia em Gel , Halogenação , Lignina/química , Peso Molecular , Oxirredução , Pinus/química , Solubilidade , Espectrofotometria Ultravioleta , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA