Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 207(11): 1464-1474, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36480958

RESUMO

Rationale: Mechanical ventilation (MV) is life-saving but may evoke ventilator-induced lung injury (VILI). Objectives: To explore how the circadian clock modulates severity of murine VILI via the core clock component BMAL1 (basic helix-loop-helix ARNT like 1) in myeloid cells. Methods: Myeloid cell BMAL1-deficient (LysM (lysozyme 2 promoter/enhancer driving cre recombinase expression)Bmal1-/-) or wild-type control (LysMBmal1+/+) mice were subjected to 4 hours MV (34 ml/kg body weight) to induce lung injury. Ventilation was initiated at dawn or dusk or in complete darkness (circadian time [CT] 0 or CT12) to determine diurnal and circadian effects. Lung injury was quantified by lung function, pulmonary permeability, blood gas analysis, neutrophil recruitment, inflammatory markers, and histology. Neutrophil activation and oxidative burst were analyzed ex vivo. Measurements and Main Results: In diurnal experiments, mice ventilated at dawn exhibited higher permeability and neutrophil recruitment compared with dusk. Experiments at CT showed deterioration of pulmonary function, worsening of oxygenation, and increased mortality at CT0 compared with CT12. Wild-type neutrophils isolated at dawn showed higher activation and reactive oxygen species production compared with dusk, whereas these day-night differences were dampened in LysMBmal1-/- neutrophils. In LysMBmal1-/- mice, circadian variations in VILI severity were dampened and VILI-induced mortality at CT0 was reduced compared with LysMBmal1+/+ mice. Conclusions: Inflammatory response and lung barrier dysfunction upon MV exhibit diurnal variations, regulated by the circadian clock. LysMBmal1-/- mice are less susceptible to ventilation-induced pathology and lack circadian variation of severity compared with LysMBmal1+/+ mice. Our data suggest that the internal clock in myeloid cells is an important modulator of VILI.


Assuntos
Relógios Circadianos , Lesão Pulmonar Induzida por Ventilação Mecânica , Camundongos , Animais , Relógios Circadianos/genética , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Pulmão , Lesão Pulmonar Induzida por Ventilação Mecânica/genética , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Ritmo Circadiano/genética , Camundongos Endogâmicos C57BL
2.
Am J Physiol Lung Cell Mol Physiol ; 322(1): L149-L161, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35015568

RESUMO

Disruption of the lung endothelial barrier is a hallmark of acute respiratory distress syndrome (ARDS), for which no effective pharmacologic treatments exist. Prior work has demonstrated that FTY720 S-phosphonate (Tys), an analog of sphingosine-1-phosphate (S1P) and FTY720, exhibits potent endothelial cell (EC) barrier protective properties. In this study, we investigated the in vitro and in vivo efficacy of Tys against methicillin-resistant Staphylococcus aureus (MRSA), a frequent bacterial cause of ARDS. Tys-protected human lung EC from barrier disruption induced by heat-killed MRSA (HK-MRSA) or staphylococcal α-toxin and attenuated MRSA-induced cytoskeletal changes associated with barrier disruption, including actin stress fiber formation and loss of peripheral VE-cadherin and cortactin. Tys-inhibited Rho and myosin light chain (MLC) activation after MRSA and blocked MRSA-induced NF-κB activation and release of the proinflammatory cytokines, IL-6 and IL-8. In vivo, intratracheal administration of live MRSA in mice caused significant vascular leakage and leukocyte infiltration into the alveolar space. Pre- or posttreatment with Tys attenuated MRSA-induced lung permeability and levels of alveolar neutrophils. Posttreatment with Tys significantly reduced levels of bronchoalveolar lavage (BAL) VCAM-1 and plasma IL-6 and KC induced by MRSA. Dynamic intravital imaging of mouse lungs demonstrated Tys attenuation of HK-MRSA-induced interstitial edema and neutrophil infiltration into lung tissue. Tys did not directly inhibit MRSA growth or viability in vitro. In conclusion, Tys inhibits lung EC barrier disruption and proinflammatory signaling induced by MRSA in vitro and attenuates acute lung injury induced by MRSA in vivo. These results support the potential utility of Tys as a novel ARDS therapeutic strategy.


Assuntos
Lesão Pulmonar Aguda/microbiologia , Lesão Pulmonar Aguda/patologia , Permeabilidade da Membrana Celular , Células Endoteliais/microbiologia , Cloridrato de Fingolimode/análogos & derivados , Staphylococcus aureus Resistente à Meticilina/fisiologia , Organofosfonatos/farmacologia , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Ativação Enzimática/efeitos dos fármacos , Cloridrato de Fingolimode/farmacologia , Humanos , Inflamação/patologia , Camundongos , Cadeias Leves de Miosina/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/metabolismo
3.
Microvasc Res ; 129: 103954, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31730773

RESUMO

Group V secretory phospholipase A2 (gVPLA2) is a potent inflammatory mediator in mammalian tissues that hydrolyzes phospholipids and initiates eicosanoid biosynthesis. Previous work has demonstrated that multiple inflammatory stimuli induce its expression and secretion in several cell types, including the lung endothelium. However, little is known about the mechanism(s) by which gVPLA2 inflammatory signaling is subsequently downregulated. Therefore, in this study we characterized potential clearance mechanisms for gVPLA2 in lung endothelial cells (EC). We observed that exogenous gVPLA2 is taken up rapidly by nutrient-starved human pulmonary artery EC (HPAEC) in vitro, and its cellular expression subsequently is reduced over several hours. In parallel experiments performed in pulmonary vascular EC isolated from mice genetically deficient in gVPLA2, the degradation of exogenously applied gVPLA2 occurs in a qualitatively similar fashion. This degradation is significantly attenuated in EC treated with ammonium chloride or chloroquine, which are lysosomal inhibitors that block autophagic flux. In contrast, the proteasomal inhibitor MG132 fails to prevent the clearance of gVPLA2. Both immunofluorescence microscopy and proximity ligation assay demonstrate the co-localization of LC3 and gVPLA2 during this process, indicating the association of gVPLA2 with autophagosomes. Nutrient starvation, a known inducer of autophagy, is sufficient to stimulate gVPLA2 degradation. These results suggest that a lysosome-mediated autophagy pathway contributes to gVPLA2 clearance from lung EC. These novel observations advance our understanding of the mechanism by which this key inflammatory enzyme is downregulated in the lung vasculature.


Assuntos
Autofagia , Células Endoteliais/enzimologia , Fosfolipases A2 do Grupo V/metabolismo , Lisossomos/enzimologia , Artéria Pulmonar/enzimologia , Animais , Células Cultivadas , Estabilidade Enzimática , Fosfolipases A2 do Grupo V/deficiência , Fosfolipases A2 do Grupo V/genética , Humanos , Camundongos Knockout , Proteólise , Fatores de Tempo
4.
Anesthesiology ; 132(4): 795-807, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32101978

RESUMO

BACKGROUND: Community-acquired pneumonia and associated sepsis cause high mortality despite antibiotic treatment. Uncontrolled inflammatory host responses contribute to the unfavorable outcome by driving lung and extrapulmonary organ failure. The complement fragment C5a holds significant proinflammatory functions and is associated with tissue damage in various inflammatory conditions. The authors hypothesized that C5a concentrations are increased in pneumonia and C5a neutralization promotes barrier stabilization in the lung and is protective in pneumococcal pulmonary sepsis. METHODS: The authors investigated regulation of C5a in pneumonia in a prospective patient cohort and in experimental pneumonia. Two complementary models of murine pneumococcal pneumonia were applied. Female mice were treated with NOX-D19, a C5a-neutralizing L-RNA-aptamer. Lung, liver, and kidney injury and the inflammatory response were assessed by measuring pulmonary permeability (primary outcome), pulmonary and blood leukocytes, cytokine concentrations in lung and blood, and bacterial load in lung, spleen, and blood, and performing histologic analyses of tissue damage, apoptosis, and fibrin deposition (n = 5 to 13). RESULTS: In hospitalized patients with pneumonia (n = 395), higher serum C5a concentrations were observed compared to healthy subjects (n = 24; 6.3 nmol/l [3.9 to 10.0] vs. 4.5 nmol/l [3.8 to 6.6], median [25 to 75% interquartile range]; difference: 1.4 [95% CI, 0.1 to 2.9]; P = 0.029). Neutralization of C5a in mice resulted in lower pulmonary permeability in pneumococcal pneumonia (1.38 ± 0.89 vs. 3.29 ± 2.34, mean ± SD; difference: 1.90 [95% CI, 0.15 to 3.66]; P = 0.035; n = 10 or 11) or combined severe pneumonia and mechanical ventilation (2.56 ± 1.17 vs. 7.31 ± 5.22; difference: 4.76 [95% CI, 1.22 to 8.30]; P = 0.011; n = 9 or 10). Further, C5a neutralization led to lower blood granulocyte colony-stimulating factor concentrations and protected against sepsis-associated liver injury. CONCLUSIONS: Systemic C5a is elevated in pneumonia patients. Neutralizing C5a protected against lung and liver injury in pneumococcal pneumonia in mice. Early neutralization of C5a might be a promising adjunctive treatment strategy to improve outcome in community-acquired pneumonia.


Assuntos
Aptâmeros de Nucleotídeos/administração & dosagem , Complemento C5a/antagonistas & inibidores , Pneumonia Pneumocócica/sangue , Pneumonia Pneumocócica/prevenção & controle , Sepse/sangue , Sepse/prevenção & controle , Animais , Anticorpos Neutralizantes/administração & dosagem , Biomarcadores/sangue , Estudos de Coortes , Complemento C5a/metabolismo , Feminino , Fatores Imunológicos/antagonistas & inibidores , Fatores Imunológicos/sangue , Camundongos , Camundongos Endogâmicos C57BL , Estudos Prospectivos
6.
Crit Care Med ; 46(3): e258-e267, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298188

RESUMO

OBJECTIVES: Severe pneumonia may evoke acute lung injury, and sphingosine-1-phosphate is involved in the regulation of vascular permeability and immune responses. However, the role of sphingosine-1-phosphate and the sphingosine-1-phosphate producing sphingosine kinase 1 in pneumonia remains elusive. We examined the role of the sphingosine-1-phosphate system in regulating pulmonary vascular barrier function in bacterial pneumonia. DESIGN: Controlled, in vitro, ex vivo, and in vivo laboratory study. SUBJECTS: Female wild-type and SphK1-deficient mice, 8-10 weeks old. Human postmortem lung tissue, human blood-derived macrophages, and pulmonary microvascular endothelial cells. INTERVENTIONS: Wild-type and SphK1-deficient mice were infected with Streptococcus pneumoniae. Pulmonary sphingosine-1-phosphate levels, messenger RNA expression, and permeability as well as lung morphology were analyzed. Human blood-derived macrophages and human pulmonary microvascular endothelial cells were infected with S. pneumoniae. Transcellular electrical resistance of human pulmonary microvascular endothelial cell monolayers was examined. Further, permeability of murine isolated perfused lungs was determined following exposition to sphingosine-1-phosphate and pneumolysin. MEASUREMENTS AND MAIN RESULTS: Following S. pneumoniae infection, murine pulmonary sphingosine-1-phosphate levels and sphingosine kinase 1 and sphingosine-1-phosphate receptor 2 expression were increased. Pneumonia-induced lung hyperpermeability was reduced in SphK1 mice compared with wild-type mice. Expression of sphingosine kinase 1 in macrophages recruited to inflamed lung areas in pneumonia was observed in murine and human lungs. S. pneumoniae induced the sphingosine kinase 1/sphingosine-1-phosphate system in blood-derived macrophages and enhanced sphingosine-1-phosphate receptor 2 expression in human pulmonary microvascular endothelial cell in vitro. In isolated mouse lungs, pneumolysin-induced hyperpermeability was dose dependently and synergistically increased by sphingosine-1-phosphate. This sphingosine-1-phosphate-induced increase was reduced by inhibition of sphingosine-1-phosphate receptor 2 or its downstream effector Rho-kinase. CONCLUSIONS: Our data suggest that targeting the sphingosine kinase 1-/sphingosine-1-phosphate-/sphingosine-1-phosphate receptor 2-signaling pathway in the lung may provide a novel therapeutic perspective in pneumococcal pneumonia for prevention of acute lung injury.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Inflamação/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Pneumonia Pneumocócica/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Lesão Pulmonar Aguda/enzimologia , Lesão Pulmonar Aguda/etiologia , Animais , Feminino , Humanos , Inflamação/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia Pneumocócica/complicações , Pneumonia Pneumocócica/enzimologia , Receptores de Esfingosina-1-Fosfato , Streptococcus pneumoniae
7.
Curr Top Membr ; 82: 197-256, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30360780

RESUMO

The pulmonary vascular endothelium is involved in the pathogenesis of acute and chronic lung diseases. Endothelial cell (EC)-derived products such as extracellular vesicles (EVs) serve as EC messengers that mediate inflammatory as well as cytoprotective effects. EC-EVs are a broad term, which encompasses exosomes and microvesicles of endothelial origin. EVs are comprised of lipids, nucleic acids, and proteins that reflect not only the cellular origin but also the stimulus that triggered their biogenesis and secretion. This chapter presents an overview of the biology of EC-EVs and summarizes key findings regarding their characteristics, components, and functions. The role of EC-EVs is specifically delineated in pulmonary diseases characterized by endothelial dysfunction, including pulmonary hypertension, acute respiratory distress syndrome and associated conditions, chronic obstructive pulmonary disease, and obstructive sleep apnea.


Assuntos
Endotélio Vascular/metabolismo , Vesículas Extracelulares/metabolismo , Pneumopatias/patologia , Pulmão/metabolismo , Humanos , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Pneumopatias/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Apneia Obstrutiva do Sono/metabolismo , Apneia Obstrutiva do Sono/patologia
8.
Am J Respir Cell Mol Biol ; 52(2): 193-204, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25029266

RESUMO

Acute lung injury (ALI) results from infectious challenges and from pathologic lung distention produced by excessive tidal volume delivered during mechanical ventilation (ventilator-induced lung injury [VILI]) and is characterized by extensive alveolar and vascular dysfunction. Identification of novel ALI therapies is hampered by the lack of effective ALI/VILI biomarkers. We explored endothelial cell (EC)-derived microparticles (EMPs) (0.1-1 µm) as potentially important markers and potential mediators of lung vascular injury in preclinical models of ALI and VILI. We characterized EMPs (annexin V and CD31 immunoreactivity) produced from human lung ECs exposed to physiologic or pathologic mechanical stress (5 or 18% cyclic stretch [CS]) or to endotoxin (LPS). EC exposure to 18% CS or to LPS resulted in increased EMP shedding compared with static cells (∼ 4-fold and ∼ 2.5-fold increases, respectively). Proteomic analysis revealed unique 18% CS-derived (n = 10) and LPS-derived EMP proteins (n = 43). VILI-challenged mice (40 ml/kg, 4 h) exhibited increased plasma and bronchoalveolar lavage CD62E (E-selectin)-positive MPs compared with control mice. Finally, mice receiving intratracheal instillation of 18% CS-derived EMPs displayed significant lung inflammation and injury. These findings indicate that ALI/VILI-producing stimuli induce significant shedding of distinct EMP populations that may serve as potential ALI biomarkers and contribute to the severity of lung injury.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Micropartículas Derivadas de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Endotoxinas/farmacologia , Estresse Mecânico , Lesão Pulmonar Induzida por Ventilação Mecânica/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Micropartículas Derivadas de Células/patologia , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Humanos , Lipopolissacarídeos/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Pneumonia/patologia , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
9.
Am J Physiol Lung Cell Mol Physiol ; 309(11): L1294-304, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26432864

RESUMO

Acute lung injury/acute respiratory distress syndrome (ALI/ARDS), an illness characterized by life-threatening vascular leak, is a significant cause of morbidity and mortality in critically ill patients. Recent preclinical studies and clinical observations have suggested a potential role for the chemotherapeutic agent imatinib in restoring vascular integrity. Our prior work demonstrates differential effects of imatinib in mouse models of ALI, namely attenuation of LPS-induced lung injury but exacerbation of ventilator-induced lung injury (VILI). Because of the critical role of mechanical ventilation in the care of patients with ARDS, in the present study we pursued an assessment of the effectiveness of imatinib in a "two-hit" model of ALI caused by combined LPS and VILI. Imatinib significantly decreased bronchoalveolar lavage protein, total cells, neutrophils, and TNF-α levels in mice exposed to LPS plus VILI, indicating that it attenuates ALI in this clinically relevant model. In subsequent experiments focusing on its protective role in LPS-induced lung injury, imatinib attenuated ALI when given 4 h after LPS, suggesting potential therapeutic effectiveness when given after the onset of injury. Mechanistic studies in mouse lung tissue and human lung endothelial cells revealed that imatinib inhibits LPS-induced NF-κB expression and activation. Overall, these results further characterize the therapeutic potential of imatinib against inflammatory vascular leak.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Mesilato de Imatinib/uso terapêutico , Inflamação/tratamento farmacológico , Pulmão/irrigação sanguínea , Pulmão/patologia , Lesão Pulmonar Aguda/complicações , Lesão Pulmonar Aguda/patologia , Animais , Líquido da Lavagem Broncoalveolar , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Mesilato de Imatinib/farmacologia , Inflamação/complicações , Inflamação/patologia , Lipopolissacarídeos , Pulmão/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Artéria Pulmonar/patologia , Respiração Artificial/efeitos adversos , Fator de Necrose Tumoral alfa/biossíntese , Lesão Pulmonar Induzida por Ventilação Mecânica/complicações , Lesão Pulmonar Induzida por Ventilação Mecânica/tratamento farmacológico , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
10.
Am J Respir Cell Mol Biol ; 51(2): 223-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24588101

RESUMO

We previously identified the intracellular nicotinamide phosphoribosyltransferase (iNAMPT, aka pre-B-cell colony enhancing factor) as a candidate gene promoting acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI) with circulating nicotinamide phosphoribosyltransferase potently inducing NF-κB signaling in lung endothelium. iNAMPT also synthesizes intracellular nicotinamide adenine dinucleotide (iNAD) in response to extracellular oxidative stress, contributing to the inhibition of apoptosis via ill-defined mechanisms. We now further define the role of iNAMPT activity in the pathogenesis of ARDS/VILI using the selective iNAMPT inhibitor FK-866. C57/B6 mice were exposed to VILI (40 ml/kg, 4 h) or LPS (1.5 mg/kg, 18 h) after osmotic pump delivery of FK-866 (100 mg/kg/d, intraperitoneally). Assessment of total bronchoalveolar lavage (BAL) protein, polymorphonuclear neutrophil (PMN) levels, cytokine levels (TNF-α, IL-6, IL-1α), lung iNAD levels, and injury scores revealed that FK-866-mediated iNAMPT inhibition successfully reduced lung tissue iNAD levels, BAL injury indices, inflammatory cell infiltration, and lung injury scores in LPS- and VILI-exposed mice. FK-866 further increased lung PMN apoptosis, as reflected by caspase-3 activation in BAL PMNs. These findings support iNAMPT inhibition via FK-866 as a novel therapeutic agent for ARDS via enhanced apoptosis in inflammatory PMNs.


Assuntos
Acrilamidas/farmacologia , Anti-Inflamatórios/farmacologia , Citocinas/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Pulmão/efeitos dos fármacos , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Piperidinas/farmacologia , Pneumonia/tratamento farmacológico , Síndrome do Desconforto Respiratório/tratamento farmacológico , Lesão Pulmonar Induzida por Ventilação Mecânica/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Líquido da Lavagem Broncoalveolar/imunologia , Caspase 3/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Pulmão/enzimologia , Pulmão/imunologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , NAD/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/enzimologia , Neutrófilos/imunologia , Nicotinamida Fosforribosiltransferase/metabolismo , Pneumonia/enzimologia , Pneumonia/imunologia , Pneumonia/patologia , Síndrome do Desconforto Respiratório/enzimologia , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/patologia , Lesão Pulmonar Induzida por Ventilação Mecânica/enzimologia , Lesão Pulmonar Induzida por Ventilação Mecânica/imunologia , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
11.
Crit Care Med ; 42(3): e189-99, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24335440

RESUMO

OBJECTIVE: Effective therapies are needed to reverse the increased vascular permeability that characterizes acute inflammatory diseases such as acute lung injury. FTY720 is a pharmaceutical analog of the potent barrier-enhancing phospholipid, sphingosine 1-phosphate. Because both FTY720 and sphingosine 1-phosphate have properties that may limit their usefulness in patients with acute lung injury, alternative compounds are needed for therapeutic use. The objective of this study is to characterize the effects of FTY720 (S)-phosphonate, a novel analog of FTY720-phosphate, on variables of pulmonary vascular permeability in vitro and alveolar-capillary permeability in vivo. SETTING: University-affiliated research institute. SUBJECTS: Cultured human pulmonary endothelial cells; C57BL/6 mice. INTERVENTIONS: Endothelial cells were stimulated with sphingosine 1-phosphate receptor 1 agonists to determine effects on sphingosine 1-phosphate receptor 1 expression. Acute lung injury was induced in C57BL/6 mice with bleomycin to assess effects of sphingosine 1-phosphate receptor 1 agonists. MEASUREMENTS AND MAIN RESULTS: FTY720 (S)-phosphonate potently increases human pulmonary endothelial cell barrier function in vitro as measured by transendothelial electrical resistance. Reduction of sphingosine 1-phosphate receptor 1 with small interference RNA significantly attenuates this transendothelial electrical resistance elevation. FTY720 (S)-phosphonate maintains endothelial sphingosine 1-phosphate receptor 1 protein expression in contrast to greater than 50% reduction after incubation with sphingosine 1-phosphate, FTY720, or other sphingosine 1-phosphate receptor 1 agonists. FTY720 (S)-phosphonate does not induce ß-arrestin recruitment, sphingosine 1-phosphate receptor 1 ubiquitination, and proteosomal degradation that occur after other agonists. Intraperitoneal administration of FTY720 (S)-phosphonate every other day for 1 week in normal or bleomycin-injured mice maintains significantly higher lung sphingosine 1-phosphate receptor 1 expression compared with FTY720. FTY720 fails to protect against bleomycin-induced acute lung injury in mice, while FTY720 (S)-phosphonate significantly decreases lung leak and inflammation. CONCLUSION: FTY720 (S)-phosphonate is a promising barrier-promoting agent that effectively maintains sphingosine 1-phosphate receptor 1 levels and improves outcomes in the bleomycin model of acute lung injury.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Arrestinas/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Propilenoglicóis/farmacologia , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Lesão Pulmonar Aguda/fisiopatologia , Animais , Arrestinas/efeitos dos fármacos , Bleomicina/farmacologia , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Cloridrato de Fingolimode , Imunofluorescência , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Lisoesfingolipídeo/efeitos dos fármacos , Sensibilidade e Especificidade , Esfingosina/farmacologia , beta-Arrestinas
12.
Am J Respir Cell Mol Biol ; 47(5): 628-36, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22771388

RESUMO

The inflamed lung exhibits oxidative and nitrative modifications of multiple target proteins, potentially reflecting disease severity and progression. We identified sphingosine-1-phosphate receptor-3 (S1PR3), a critical signaling molecule mediating cell proliferation and vascular permeability, as a nitrated plasma protein in mice with acute lung injury (ALI). We explored S1PR3 as a potential biomarker in murine and human ALI. In vivo nitrated and total S1PR3 concentrations were determined by immunoprecipitation and microarray studies in mice, and by ELISA in human plasma. In vitro nitrated S1PR3 concentrations were evaluated in human lung vascular endothelial cells (ECs) or within microparticles shed from ECs after exposure to barrier-disrupting agonists (LPS, low-molecular-weight hyaluronan, and thrombin). The effects of S1PR3-containing microparticles on EC barrier function were assessed by transendothelial electrical resistance (TER). Nitrated S1PR3 was identified in the plasma of murine ALI and in humans with severe sepsis-induced ALI. Elevated total S1PR3 plasma concentrations (> 251 pg/ml) were linked to sepsis and ALI mortality. In vitro EC exposure to barrier-disrupting agents induced S1PR3 nitration and the shedding of S1PR3-containing microparticles, which significantly reduced TER, consistent with increased permeability. These changes were attenuated by reduced S1PR3 expression (small interfering RNAs). These results suggest that microparticles containing nitrated S1PR3 shed into the circulation during inflammatory lung states, and represent a novel ALI biomarker linked to disease severity and outcome.


Assuntos
Lesão Pulmonar Aguda/sangue , Receptores de Lisoesfingolipídeo/sangue , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/mortalidade , Adulto , Idoso , Animais , Biomarcadores/sangue , Permeabilidade Capilar , Estudos de Casos e Controles , Micropartículas Derivadas de Células/metabolismo , Células Cultivadas , Impedância Elétrica , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotélio Vascular/patologia , Feminino , Técnicas de Silenciamento de Genes , Humanos , Estimativa de Kaplan-Meier , Lipopolissacarídeos/farmacologia , Pulmão/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Artéria Pulmonar/patologia , Interferência de RNA , Receptores de Lisoesfingolipídeo/genética , Receptores de Esfingosina-1-Fosfato , Tirosina/análogos & derivados , Tirosina/sangue , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo
13.
Biochim Biophys Acta ; 1811(6): 370-6, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21185392

RESUMO

Alveolar epithelial type II cells (AT II) in which lung surfactant synthesis and secretion take place, are subjected to low magnitude stretch during normal breathing. The aim of the study was to explore the effect of mild stretch on phospholipase A(2) (PLA(2)) activation, an enzyme known to be involved in surfactant secretion. In A549 cells (a model of AT II cells), we showed, using a fluorometric assay, that stretch triggers an increase of total PLA(2) activity. Western blot experiments revealed that the cytosolic isoform cPLA(2) is rapidly phosphorylated under stretch, in addition to a modest increase in cPLA(2) mRNA levels. Treatment of A549 cells with selective inhibitors of the MEK/ERK pathway significantly attenuated the stretch-induced cPLA(2) phosphorylation. A strong interaction of cPLA(2) and pERK enzymes was demonstrated by immunoprecipitation. We also found that inhibition of PI3K pathway attenuated cPLA(2) activation after stretch, without affecting pERK levels. Our results suggest that low magnitude stretch can induce cPLA(2) phosphorylation through the MEK/ERK and PI3K-Akt pathways, independently.


Assuntos
Células Epiteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfolipases A2 Citosólicas/metabolismo , Androstadienos/farmacologia , Butadienos/farmacologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Flavonoides/farmacologia , Fluorometria , Fosfolipases A2 do Grupo IV/genética , Fosfolipases A2 do Grupo IV/metabolismo , Humanos , Immunoblotting , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Nitrilas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Fosfolipases A2 Citosólicas/genética , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Estresse Mecânico , Fatores de Tempo , Wortmanina
14.
Transl Res ; 244: 56-74, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35181549

RESUMO

The cortactin gene (CTTN), encoding an actin-binding protein critically involved in cytoskeletal dynamics and endothelial cell (EC) barrier integrity, contains single nucleotide polymorphisms (SNPs) associated with severe asthma in Black patients. As loss of lung EC integrity is a major driver of mortality in the Acute Respiratory Distress Syndrome (ARDS), sepsis, and the acute chest syndrome (ACS), we speculated CTTN SNPs that alter EC barrier function will associate with clinical outcomes from these types of conditions in Black patients. In case-control studies, evaluation of a nonsynonymous CTTN coding SNP Ser484Asn (rs56162978, G/A) in a severe sepsis cohort (725 Black subjects) revealed significant association with increased risk of sepsis mortality. In a separate cohort of sickle cell disease (SCD) subjects with and without ACS (177 SCD Black subjects), significantly increased risk of ACS and increased ACS severity (need for mechanical ventilation) was observed in carriers of the A allele. Human lung EC expressing the cortactin S484N transgene exhibited: (i) delayed EC barrier recovery following thrombin-induced permeability; (ii) reduced levels of critical Tyr486 cortactin phosphorylation; (iii) inhibited binding to the cytoskeletal regulator, nmMLCK; and (iv) attenuated EC barrier-promoting lamellipodia dynamics and biophysical responses. ARDS-challenged Cttn+/- heterozygous mice exhibited increased lung vascular permeability (compared to wild-type mice) which was significantly attenuated by IV delivery of liposomes encargoed with CTTN WT transgene but not by CTTN S484N transgene. In summary, these studies suggest that the CTTN S484N coding SNP contributes to severity of inflammatory injury in Black patients, potentially via delayed vascular barrier restoration.


Assuntos
Síndrome do Desconforto Respiratório , Sepse , Animais , Permeabilidade Capilar , Cortactina/genética , Cortactina/metabolismo , Humanos , Pulmão/metabolismo , Camundongos , Polimorfismo de Nucleotídeo Único , Síndrome do Desconforto Respiratório/genética , Índice de Gravidade de Doença
15.
Am J Respir Cell Mol Biol ; 45(6): 1203-11, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21685153

RESUMO

The role of thyroid hormone metabolism in clinical outcomes of the critically ill remains unclear. Using preclinical models of acute lung injury (ALI), we assessed the gene and protein expression of type 2 deiodinase (DIO2), a key driver for synthesis of biologically active triiodothyronine, and addressed potential association of DIO2 genetic variants with ALI in a multiethnic cohort. DIO2 gene and protein expression levels in murine lung were validated by microarrays and immunoblotting. Lung injury was assessed by levels of bronchoalveolar lavage protein and leukocytes. Single-nucleotide polymorphisms were genotyped and ALI susceptibility association assessed. Significant increases in both DIO2 gene and D2 protein expression were observed in lung tissues from murine ALI models (LPS- and ventilator-induced lung injury), with expression directly increasing with the extent of lung injury. Mice with reduced levels of DIO2 expression (by silencing RNA) demonstrated reduced thyroxine levels in plasma and increased lung injury (increased bronchoalveolar lavage protein and leukocytes), suggesting a protective role for DIO2 in ALI. The G (Ala) allele of the Thr92Ala coding single-nucleotide polymorphism (rs225014) was protective in severe sepsis and severe sepsis-associated ALI after adjustments for age, sex, and genetic ancestry in a logistic regression model in European Americans. Our studies indicate that DIO2 is a novel ALI candidate gene, the nonsynonymous Thr92Ala coding variant of which confers ALI protection. Increased DIO2 expression may dampen the ALI inflammatory response, thereby strengthening the premise that thyroid hormone metabolism is intimately linked to the integrated response to inflammatory injury in critically ill patients.


Assuntos
Lesão Pulmonar Aguda , Regulação Enzimológica da Expressão Gênica , Iodeto Peroxidase , Polimorfismo de Nucleotídeo Único , Sepse , Hormônios Tireóideos/metabolismo , Lesão Pulmonar Aguda/enzimologia , Lesão Pulmonar Aguda/etnologia , Lesão Pulmonar Aguda/genética , Fatores Etários , Alelos , Animais , Estudos de Coortes , Estado Terminal , Modelos Animais de Doenças , Humanos , Iodeto Peroxidase/biossíntese , Iodeto Peroxidase/genética , Pulmão/enzimologia , Camundongos , Sepse/enzimologia , Sepse/etnologia , Sepse/genética , Fatores Sexuais , Hormônios Tireóideos/genética , Iodotironina Desiodinase Tipo II
16.
Cell Biochem Biophys ; 79(3): 609-617, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34105094

RESUMO

The secretory phospholipase A2 (sPLA2) group of secreted enzymes hydrolyze phospholipids and lead to the production of multiple biologically active lipid mediators. sPLA2s and their products (e.g., eicosanoids) play a significant role in the pathophysiology of various inflammatory diseases, including life-threatening lung disorders such as acute lung injury (ALI) and the Acute Respiratory Distress Syndrome (ARDS). The ALI/ARDS spectrum of severe inflammatory conditions is caused by direct (such as bacterial or viral pneumonia) or indirect insults (sepsis) that are associated with high morbidity and mortality. Several sPLA2 isoforms are upregulated in patients with ARDS as well as in multiple ALI preclinical models, and individual sPLA2s exert unique roles in regulating ALI pathophysiology. This brief review will summarize the contributions of specific sPLA2 isoforms as markers and mediators in ALI, supporting a potential therapeutic role for targeting them in ARDS.


Assuntos
Lesão Pulmonar Aguda
17.
Cells ; 10(12)2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34944089

RESUMO

Pneumolysin (PLY) is a pore-forming toxin of Streptococcus pneumoniae that contributes substantially to the inflammatory processes underlying pneumococcal pneumonia and lung injury. Host responses against S. pneumoniae are regulated in part by neutrophils and platelets, both individually and in cooperative interaction. Previous studies have shown that PLY can target both neutrophils and platelets, however, the mechanisms by which PLY directly affects these cells and alters their interactions are not completely understood. In this study, we characterize the effects of PLY on neutrophils and platelets and explore the mechanisms by which PLY may induce neutrophil-platelet interactions. In vitro studies demonstrated that PLY causes the formation of neutrophil extracellular traps (NETs) and the release of extracellular vesicles (EVs) from both human and murine neutrophils. In vivo, neutrophil EV (nEV) levels were increased in mice infected with S. pneumoniae. In platelets, treatment with PLY induced the cell surface expression of P-selectin (CD62P) and binding to annexin V and caused a significant release of platelet EVs (pl-EVs). Moreover, PLY-induced nEVs but not NETs promoted platelet activation. The pretreatment of nEVs with proteinase K inhibited platelet activation, indicating that the surface proteins of nEVs play a role in this process. Our findings demonstrate that PLY activates neutrophils and platelets to release EVs and support an important role for neutrophil EVs in modulating platelet functions in pneumococcal infections.


Assuntos
Vesículas Extracelulares/metabolismo , Neutrófilos/metabolismo , Ativação Plaquetária/efeitos dos fármacos , Estreptolisinas/farmacologia , Animais , Proteínas de Bactérias/farmacologia , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/metabolismo , Humanos , Camundongos , Ativação de Neutrófilo/efeitos dos fármacos
18.
Cells ; 10(11)2021 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-34831092

RESUMO

Cigarette smoke (CS) is the primary cause of Chronic Obstructive Pulmonary Disease (COPD), and an important pathophysiologic event in COPD is CS-induced apoptosis in lung endothelial cells (EC). Cortactin (CTTN) is a cytoskeletal actin-binding regulatory protein with modulation by Src-mediated tyrosine phosphorylation. Based upon data demonstrating reduced CTTN mRNA levels in the lungs of smokers compared to non-smokers, we hypothesized a functional role for CTTN in CS-induced mitochondrial ROS generation and apoptosis in lung EC. Exposure of cultured human lung EC to CS condensate (CSC) led to the rearrangement of the actin cytoskeleton and increased CTTN tyrosine phosphorylation (within hours). Exposure to CS significantly increased EC mitochondrial ROS generation and EC apoptosis. The functional role of CTTN in these CSC-induced EC responses was explored using cortactin siRNA to reduce its expression, and by using a blocking peptide for the CTTN SH3 domain, which is critical to cytoskeletal interactions. CTTN siRNA or blockade of its SH3 domain resulted in significantly increased EC mitochondrial ROS and apoptosis and augmented CSC-induced effects. Exposure of lung EC to e-cigarette condensate demonstrated similar results, with CTTN siRNA or SH3 domain blocking peptide increasing lung EC apoptosis. These data demonstrate a novel role for CTTN in modulating lung EC apoptosis induced by CS or e-cigarettes potentially providing new insights into COPD pathogenesis.


Assuntos
Apoptose , Cortactina/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Pulmão/patologia , Fumar/efeitos adversos , Apoptose/genética , Cortactina/química , Cortactina/genética , Citoesqueleto/metabolismo , Regulação da Expressão Gênica , Humanos , Mitocôndrias/metabolismo , Modelos Biológicos , Fosfotirosina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fumantes , Domínios de Homologia de src
19.
Cells ; 10(7)2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34359901

RESUMO

Lung endothelial dysfunction is a key feature of acute lung injury (ALI) and clinical acute respiratory distress syndrome (ARDS). Previous studies have identified the lipid-generating enzyme, group V phospholipase A2 (gVPLA2), as a mediator of lung endothelial barrier disruption and inflammation. The current study aimed to determine the role of gVPLA2 in mediating lung endothelial responses to methicillin-resistant Staphylococcus aureus (MRSA, USA300 strain), a major cause of ALI/ARDS. In vitro studies assessed the effects of gVPLA2 inhibition on lung endothelial cell (EC) permeability after exposure to heat-killed (HK) MRSA. In vivo studies assessed the effects of intratracheal live or HK-MRSA on multiple indices of ALI in wild-type (WT) and gVPLA2-deficient (KO) mice. In vitro, HK-MRSA increased gVPLA2 expression and permeability in human lung EC. Inhibition of gVPLA2 with either the PLA2 inhibitor, LY311727, or with a specific monoclonal antibody, attenuated the barrier disruption caused by HK-MRSA. LY311727 also reduced HK-MRSA-induced permeability in mouse lung EC isolated from WT but not gVPLA2-KO mice. In vivo, live MRSA caused significantly less ALI in gVPLA2 KO mice compared to WT, findings confirmed by intravital microscopy assessment in HK-MRSA-treated mice. After targeted delivery of gVPLA2 plasmid to lung endothelium using ACE antibody-conjugated liposomes, MRSA-induced ALI was significantly increased in gVPLA2-KO mice, indicating that lung endothelial expression of gVPLA2 is critical in vivo. In summary, these results demonstrate an important role for gVPLA2 in mediating MRSA-induced lung EC permeability and ALI. Thus, gVPLA2 may represent a novel therapeutic target in ALI/ARDS caused by bacterial infection.


Assuntos
Lesão Pulmonar Aguda/enzimologia , Lesão Pulmonar Aguda/microbiologia , Células Endoteliais/microbiologia , Células Endoteliais/patologia , Staphylococcus aureus Resistente à Meticilina/fisiologia , Fosfolipases A2/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Indóis/farmacologia , Pulmão/diagnóstico por imagem , Pulmão/microbiologia , Pulmão/patologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos Knockout , Modelos Biológicos , Fosfolipases A2/deficiência
20.
Crit Care ; 14(2): R70, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20403177

RESUMO

INTRODUCTION: Activated Protein C (APC), an endogenous anticoagulant, improves tissue microperfusion and endothelial cell survival in systemic inflammatory states such as sepsis, but intravenous administration may cause severe bleeding. We have thus addressed the role of APC delivered locally by inhalation in preventing acute lung injury from alveolar overdistention and the subsequent ventilator-induced lung injury (VILI). We also assessed the effects of APC on the activation status of Extracellular- Regulated Kinase 1/2 (ERK) pathway, which has been shown to be involved in regulating pulmonary responses to mechanical stretch. METHODS: Inhaled APC (12.5 microg drotrecogin-alpha x 4 doses) or saline was given to tracheotomized C57/Bl6 mice starting 20 min prior to initiation of injurious mechanical ventilation with tidal volume 25 mL/Kg for 4 hours and then hourly thereafter; control groups receiving inhaled saline were ventilated with 8 mL/Kg for 30 min or 4 hr. We measured lung function (respiratory system elastance H), arterial blood gases, surrogates of vascular leak (broncho-alveolar lavage (BAL) total protein and angiotensin-converting enzyme (ACE)-activity), and parameters of inflammation (BAL neutrophils and lung tissue myeloperoxidase (MPO) activity). Morphological alterations induced by mechanical ventilation were examined in hematoxylin-eosin lung tissue sections. The activation status of ERK was probed in lung tissue homogenates by immunoblotting and in paraffin sections by immunohistochemistry. The effect of APC on ERK signaling downstream of the thrombin receptor was tested on A549 human lung epithelial cells by immunoblotting. Statistical analyses were performed using ANOVA with appropriate post-hoc testing. RESULTS: In mice subjected to VILI without APC, we observed hypoxemia, increased respiratory system elastance and inflammation, assessed by BAL neutrophil counts and tissue MPO activity. BAL total protein levels and ACE activity were also elevated by VILI, indicating compromise of the alveolo-capillary barrier. In addition to preserving lung function, inhaled APC prevented endothelial barrier disruption and attenuated hypoxemia and the inflammatory response. Mechanistically, we found a strong activation of ERK in lung tissues by VILI, which was prevented by APC, suggestive of pathogenetic involvement of the Mitogen-Activated Kinase pathway. In cultured human lung epithelial cells challenged by thrombin, APC abrogated the activation of ERK and its downstream effector, cytosolic Phospholipase A2. CONCLUSIONS: Topical application of APC by inhalation may effectively reduce lung injury induced by mechanical ventilation in mice.


Assuntos
Anticoagulantes/administração & dosagem , Anticoagulantes/farmacologia , Proteína C/administração & dosagem , Proteína C/farmacologia , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Administração por Inalação , Animais , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA