Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Syst Biol ; 20(6): 702-718, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38658795

RESUMO

The type VI secretion system (T6SS) is an important mediator of microbe-microbe and microbe-host interactions. Gram-negative bacteria use the T6SS to inject T6SS effectors (T6Es), which are usually proteins with toxic activity, into neighboring cells. Antibacterial effectors have cognate immunity proteins that neutralize self-intoxication. Here, we applied novel structural bioinformatic tools to perform systematic discovery and functional annotation of T6Es and their cognate immunity proteins from a dataset of 17,920 T6SS-encoding bacterial genomes. Using structural clustering, we identified 517 putative T6E families, outperforming sequence-based clustering. We developed a logistic regression model to reliably quantify protein-protein interaction of new T6E-immunity pairs, yielding candidate immunity proteins for 231 out of the 517 T6E families. We used sensitive structure-based annotation which yielded functional annotations for 51% of the T6E families, again outperforming sequence-based annotation. Next, we validated four novel T6E-immunity pairs using basic experiments in E. coli. In particular, we showed that the Pfam domain DUF3289 is a homolog of Colicin M and that DUF943 acts as its cognate immunity protein. Furthermore, we discovered a novel T6E that is a structural homolog of SleB, a lytic transglycosylase, and identified a specific glutamate that acts as its putative catalytic residue. Overall, this study applies novel structural bioinformatic tools to T6E-immunity pair discovery, and provides an extensive database of annotated T6E-immunity pairs.


Assuntos
Proteínas de Bactérias , Biologia Computacional , Sistemas de Secreção Tipo VI , Biologia Computacional/métodos , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/imunologia , Bactérias Gram-Negativas/imunologia , Bactérias Gram-Negativas/genética , Genoma Bacteriano , Anotação de Sequência Molecular
2.
Nucleic Acids Res ; 50(3): e17, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34871418

RESUMO

Plasmids are mobile genetic elements that play a key role in microbial ecology and evolution by mediating horizontal transfer of important genes, such as antimicrobial resistance genes. Many microbial genomes have been sequenced by short read sequencers and have resulted in a mix of contigs that derive from plasmids or chromosomes. New tools that accurately identify plasmids are needed to elucidate new plasmid-borne genes of high biological importance. We have developed Deeplasmid, a deep learning tool for distinguishing plasmids from bacterial chromosomes based on the DNA sequence and its encoded biological data. It requires as input only assembled sequences generated by any sequencing platform and assembly algorithm and its runtime scales linearly with the number of assembled sequences. Deeplasmid achieves an AUC-ROC of over 89%, and it was more accurate than five other plasmid classification methods. Finally, as a proof of concept, we used Deeplasmid to predict new plasmids in the fish pathogen Yersinia ruckeri ATCC 29473 that has no annotated plasmids. Deeplasmid predicted with high reliability that a long assembled contig is part of a plasmid. Using long read sequencing we indeed validated the existence of a 102 kb long plasmid, demonstrating Deeplasmid's ability to detect novel plasmids.


Assuntos
Aprendizado Profundo , Genoma Bacteriano , Plasmídeos , Animais , Cromossomos Bacterianos/genética , Plasmídeos/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA
3.
Nature ; 520(7548): 505-510, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25874675

RESUMO

CRISPR-Cas (clustered, regularly interspaced short palindromic repeats coupled with CRISPR-associated proteins) is a bacterial immunity system that protects against invading phages or plasmids. In the process of CRISPR adaptation, short pieces of DNA ('spacers') are acquired from foreign elements and integrated into the CRISPR array. So far, it has remained a mystery how spacers are preferentially acquired from the foreign DNA while the self chromosome is avoided. Here we show that spacer acquisition is replication-dependent, and that DNA breaks formed at stalled replication forks promote spacer acquisition. Chromosomal hotspots of spacer acquisition were confined by Chi sites, which are sequence octamers highly enriched on the bacterial chromosome, suggesting that these sites limit spacer acquisition from self DNA. We further show that the avoidance of self is mediated by the RecBCD double-stranded DNA break repair complex. Our results suggest that, in Escherichia coli, acquisition of new spacers largely depends on RecBCD-mediated processing of double-stranded DNA breaks occurring primarily at replication forks, and that the preference for foreign DNA is achieved through the higher density of Chi sites on the self chromosome, in combination with the higher number of forks on the foreign DNA. This model explains the strong preference to acquire spacers both from high copy plasmids and from phages.


Assuntos
Adaptação Fisiológica , Bacteriófagos/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , DNA Bacteriano/genética , DNA Viral/genética , Escherichia coli/genética , Plasmídeos/genética , Sistemas CRISPR-Cas/genética , Sequência Consenso/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Replicação do DNA/genética , Exodesoxirribonuclease V/metabolismo , Modelos Biológicos
4.
Mol Cell ; 50(6): 869-81, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23747012

RESUMO

The initial step in microRNA (miRNA) biogenesis requires processing of the precursor miRNA (pre-miRNA) from a longer primary transcript. Many pre-miRNAs originate from introns, and both a mature miRNA and a spliced RNA can be generated from the same transcription unit. We have identified a mechanism in which RNA splicing negatively regulates the processing of pre-miRNAs that overlap exon-intron junctions. Computational analysis identified dozens of such pre-miRNAs, and experimental validation demonstrated competitive interaction between the Microprocessor complex and the splicing machinery. Tissue-specific alternative splicing regulates maturation of one such miRNA, miR-412, resulting in effects on its targets that code a protein network involved in neuronal cell death processes. This mode of regulation specifically controls maturation of splice-site-overlapping pre-miRNAs but not pre-miRNAs located completely within introns or exons of the same transcript. Our data present a biological role of alternative splicing in regulation of miRNA biogenesis.


Assuntos
Processamento Alternativo , Éxons , Íntrons , MicroRNAs/biossíntese , Animais , Sequência de Bases , Morte Celular/genética , Redes Reguladoras de Genes , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Sequências Repetidas Invertidas , Camundongos , MicroRNAs/genética , Dados de Sequência Molecular , Família Multigênica , Neurônios/fisiologia , Conformação de Ácido Nucleico , Proteínas/metabolismo , Interferência de RNA , Sítios de Splice de RNA , Proteínas de Ligação a RNA , Ribonuclease III/genética , Ribonuclease III/metabolismo
5.
Mol Plant Microbe Interact ; 33(2): 349-363, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31609645

RESUMO

Endophytes live inside plants and are often beneficial. Kosakonia is a novel bacterial genus that includes many diazotrophic plant-associated isolates. Plant-bacteria studies on two rice endophytic Kosakonia beneficial strains were performed, including comparative genomics, secretome profiling, in planta tests, and a field release trial. The strains are efficient rhizoplane and root endosphere colonizers and localized in the root cortex. Secretomics revealed 144 putative secreted proteins, including type VI secretory system (T6SS) proteins. A Kosakonia T6SS genomic knock-out mutant showed a significant decrease in rhizoplane and endosphere colonization ability. A field trial using rice seed inoculated with Kosakonia spp. showed no effect on plant growth promotion upon nitrogen stress and microbiome studies revealed that Kosakonia spp. were significantly more present in the inoculated rice. Comparative genomics indicated that several protein domains were enriched in plant-associated Kosakonia spp. This study highlights that Kosakonia is an important, recently classified genus involved in plant-bacteria interaction.


Assuntos
Endófitos , Enterobacteriaceae , Microbiota , Oryza , Sistemas de Secreção Tipo VI , Endófitos/fisiologia , Enterobacteriaceae/fisiologia , Genômica , Interações Hospedeiro-Patógeno/fisiologia , Oryza/microbiologia , Raízes de Plantas , Sementes/microbiologia , Sistemas de Secreção Tipo VI/metabolismo
6.
Microbiology (Reading) ; 166(1): 73-84, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31621557

RESUMO

Azelaic acid is a dicarboxylic acid that has recently been shown to play a role in plant-bacteria signalling and also occurs naturally in several cereals. Several bacteria have been reported to be able to utilize azelaic acid as a unique source of carbon and energy, including Pseudomonas nitroreducens. In this study, we utilize P. nitroreducens as a model organism to study bacterial degradation of and response to azelaic acid. We report genetic evidence of azelaic acid degradation and the identification of a transcriptional regulator that responds to azelaic acid in P. nitroreducens DSM 9128. Three mutants possessing transposons in genes of an acyl-CoA ligase, an acyl-CoA dehydrogenase and an isocitrate lyase display a deficient ability in growing in azelaic acid. Studies on transcriptional regulation of these genes resulted in the identification of an IclR family repressor that we designated as AzeR, which specifically responds to azelaic acid. A bioinformatics survey reveals that AzeR is confined to a few proteobacterial genera that are likely to be able to degrade and utilize azelaic acid as the sole source of carbon and energy.


Assuntos
Ácidos Dicarboxílicos/metabolismo , Pseudomonas/metabolismo , Fatores de Transcrição/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ácidos Dicarboxílicos/química , Regulação Bacteriana da Expressão Gênica , Estrutura Molecular , Mutação , Filogenia , Regiões Promotoras Genéticas , Pseudomonas/classificação , Pseudomonas/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética
7.
Appl Environ Microbiol ; 86(13)2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32332134

RESUMO

Endophytes are microorganisms that live inside plants and are often beneficial for the host. Kosakonia is a novel bacterial genus that includes several species that are diazotrophic and plant associated. This study revealed two quorum sensing-related LuxR solos, designated LoxR and PsrR, in the plant endophyte Kosakonia sp. strain KO348. LoxR modeling and biochemical studies demonstrated that LoxR binds N-acyl homoserine lactones (AHLs) in a promiscuous way. PsrR, on the other hand, belongs to the subfamily of plant-associated-bacterium (PAB) LuxR solos that respond to plant compounds. Target promoter studies as well as modeling and phylogenetic comparisons suggest that PAB LuxR solos are likely to respond to different plant compounds. Finally, LoxR is involved in the regulation of T6SS and PsrR plays a role in root endosphere colonization.IMPORTANCE Cell-cell signaling in bacteria allows a synchronized and coordinated behavior of a microbial community. LuxR solos represent a subfamily of proteins in proteobacteria which most commonly detect and respond to signals produced exogenously by other microbes or eukaryotic hosts. Here, we report that a plant-beneficial bacterial endophyte belonging to the novel genus of Kosakonia possesses two LuxR solos; one is involved in the detection of exogenous N-acyl homoserine lactone quorum sensing signals and the other in detecting a compound(s) produced by the host plant. These two Kosakonia LuxR solos are therefore most likely involved in interspecies and interkingdom signaling.


Assuntos
Proteínas de Bactérias/genética , Endófitos/genética , Enterobacteriaceae/genética , Proteínas Repressoras/genética , Transativadores/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Endófitos/metabolismo , Enterobacteriaceae/metabolismo , Oryza/microbiologia , Filogenia , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Alinhamento de Sequência , Simbiose/genética , Transativadores/química , Transativadores/metabolismo
8.
Environ Microbiol ; 18(12): 5032-5047, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27450630

RESUMO

Toxin-antitoxin modules are gene pairs encoding a toxin and its antitoxin, and are found on the chromosomes of many bacteria, including pathogens. Here, we characterize the specific contribution of the TxpA and YqcG toxins in elimination of defective cells from developing Bacillus subtilis biofilms. On nutrient limitation, defective cells accumulated in the biofilm breaking its symmetry. Deletion of the toxins resulted in accumulation of morphologically abnormal cells, and interfered with the proper development of the multicellular community. Dual physiological responses are of significance for TxpA and YqcG activation: nitrogen deprivation enhances the transcription of both TxpA and YqcG toxins, and simultaneously sensitizes the biofilm cells to their activity. Furthermore, we demonstrate that while both toxins when overexpressed affect the morphology of the developing biofilm, the toxin TxpA can act to lyse and dissolve pre-established B. subtilis biofilms.


Assuntos
Antitoxinas/metabolismo , Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Biofilmes , Antitoxinas/genética , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Biofilmes/crescimento & desenvolvimento
9.
Genome Res ; 22(4): 802-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22300632

RESUMO

In the process of clone-based genome sequencing, initial assemblies frequently contain cloning gaps that can be resolved using cloning-independent methods, but the reason for their occurrence is largely unknown. By analyzing 9,328,693 sequencing clones from 393 microbial genomes, we systematically mapped more than 15,000 genes residing in cloning gaps and experimentally showed that their expression products are toxic to the Escherichia coli host. A subset of these toxic sequences was further evaluated through a series of functional assays exploring the mechanisms of their toxicity. Among these genes, our assays revealed novel toxins and restriction enzymes, and new classes of small, non-coding toxic RNAs that reproducibly inhibit E. coli growth. Further analyses also revealed abundant, short, toxic DNA fragments that were predicted to suppress E. coli growth by interacting with the replication initiator DnaA. Our results show that cloning gaps, once considered the result of technical problems, actually serve as a rich source for the discovery of biotechnologically valuable functions, and suggest new modes of antimicrobial interventions.


Assuntos
DNA Bacteriano/genética , Escherichia coli/genética , Genes Bacterianos/genética , RNA Bacteriano/genética , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Clonagem Molecular , DNA Bacteriano/metabolismo , DNA Bacteriano/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano/genética , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/genética , Dados de Sequência Molecular , Ligação Proteica , RNA Bacteriano/metabolismo , RNA Bacteriano/farmacologia , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA de Transferência/farmacologia , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica
10.
ISME Commun ; 4(1): ycae073, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38808121

RESUMO

Plants host a large array of commensal bacteria that interact with the host. The growth of both bacteria and plants is often dependent on nutrients derived from the cognate partners, and the bacteria fine-tune host immunity against pathogens. This ancient interaction is common in all studied land plants and is critical for proper plant health and development. We hypothesized that the spatial vicinity and the long-term relationships between plants and their microbiota may promote cross-kingdom horizontal gene transfer (HGT), a phenomenon that is relatively rare in nature. To test this hypothesis, we analyzed the Arabidopsis thaliana genome and its extensively sequenced microbiome to detect events of horizontal transfer of full-length genes that transferred between plants and bacteria. Interestingly, we detected 75 unique genes that were horizontally transferred between plants and bacteria. Plants and bacteria exchange in both directions genes that are enriched in carbohydrate metabolism functions, and bacteria transferred to plants genes that are enriched in auxin biosynthesis genes. Next, we provided a proof of concept for the functional similarity between a horizontally transferred bacterial gene and its Arabidopsis homologue in planta. The Arabidopsis DET2 gene is essential for biosynthesis of the brassinosteroid phytohormones, and loss of function of the gene leads to dwarfism. We found that expression of the DET2 homologue from Leifsonia bacteria of the Actinobacteria phylum in the Arabidopsis det2 background complements the mutant and leads to normal plant growth. Together, these data suggest that cross-kingdom HGT events shape the metabolic capabilities and interactions between plants and bacteria.

11.
mBio ; 15(1): e0191123, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38117054

RESUMO

IMPORTANCE: Microbes use protein toxins as important tools to attack neighboring cells, microbial or eukaryotic, and for self-killing when attacked by viruses. These toxins work through different mechanisms to inhibit cell growth or kill cells. Microbes also use antitoxin proteins to neutralize the toxin activities. Here, we developed a comprehensive database called Toxinome of nearly two million toxins and antitoxins that are encoded in 59,475 bacterial genomes. We described the distribution of bacterial toxins and identified that they are depleted by bacteria that live in hot and cold temperatures. We found 5,161 cases in which toxins and antitoxins are densely clustered in bacterial genomes and termed these areas "Toxin Islands." The Toxinome database is a useful resource for anyone interested in toxin biology and evolution, and it can guide the discovery of new toxins.


Assuntos
Antitoxinas , Toxinas Bacterianas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Bactérias/genética , Bactérias/metabolismo , Antitoxinas/metabolismo , Genoma Bacteriano
12.
Curr Opin Microbiol ; 72: 102283, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36868050

RESUMO

Plant-microbe interactions are important for both physiological and pathological processes. Despite the significance of plant-microbe interactions, microbe-microbe interactions themselves represent an important, complex, dynamic network that warrants deeper investigation. To understand how microbe-microbe interactions affect plant microbiomes, one approach is to systematically understand all the factors involved in successful engineering of a microbial community. This follows the physicist Richard Feynman's declaration: "what I cannot create, I do not understand". This review highlights recent studies that focus on aspects that we believe are important for building (ergo understanding) microbe-microbe interactions in the plant environment, including pairwise screening, intelligent application of cross-feeding models, spatial distributions of microbes, and understudied interactions between bacteria and fungi, phages, and protists. We offer a framework for systematic collection and centralized integration of data of plant microbiomes that could organize all the factors that can help ecologists understand microbiomes and help synthetic ecologists engineer beneficial microbiomes.


Assuntos
Microbiota , Raízes de Plantas , Raízes de Plantas/microbiologia , Microbiota/fisiologia , Interações Microbianas , Plantas/microbiologia , Bactérias
13.
mSystems ; 8(2): e0103922, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36802056

RESUMO

Many proteobacteria possess LuxR solos which are quorum sensing LuxR-type regulators that are not paired with a cognate LuxI-type synthase. LuxR solos have been implicated in intraspecies, interspecies, and interkingdom communication by sensing endogenous and exogenous acyl-homoserine lactones (AHLs) as well as non-AHL signals. LuxR solos are likely to play a major role in microbiome formation, shaping, and maintenance through many different cell-cell signaling mechanisms. This review intends to assess the different types and discuss the possible functional roles of the widespread family of LuxR solo regulators. In addition, an analysis of LuxR solo types and variability among the totality of publicly available proteobacterial genomes is presented. This highlights the importance of these proteins and will encourage scientists to mobilize and study them in order to increase our knowledge of novel cell-cell mechanisms that drive bacterial interactions in the context of complex bacterial communities.


Assuntos
Proteínas Repressoras , Transativadores , Proteínas Repressoras/genética , Transativadores/genética , Proteobactérias/metabolismo , Bactérias/metabolismo , Transdução de Sinais
14.
Front Microbiol ; 14: 1243371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808319

RESUMO

Introduction: Non-tuberculous mycobacteria (NTM) is a major category of environmental bacteria in nature that can be divided into rapidly growing mycobacteria (RGM) and slowly growing mycobacteria (SGM) based on their distinct growth rates. To explore differential molecular mechanisms between RGM and SGM is crucial to understand their survival state, environmental/host adaptation and pathogenicity. Comparative genomic analysis provides a powerful tool for deeply investigating differential molecular mechanisms between them. However, large-scale comparative genomic analysis between RGM and SGM is still uncovered. Methods: In this study, we screened 335 high-quality, non-redundant NTM genome sequences covering 187 species from 3,478 online NTM genomes, and then performed a comprehensive comparative genomic analysis to identify differential genomic characteristics and featured genes/protein domains between RGM and SGM. Results: Our findings reveal that RGM has a larger genome size, more genes, lower GC content, and more featured genes/protein domains in metabolism of some main substances (e.g. carbohydrates, amino acids, nucleotides, ions, and coenzymes), energy metabolism, signal transduction, replication, transcription, and translation processes, which are essential for its rapid growth requirements. On the other hand, SGM has a smaller genome size, fewer genes, higher GC content, and more featured genes/protein domains in lipid and secondary metabolite metabolisms and cellular defense mechanisms, which help enhance its genome stability and environmental adaptability. Additionally, orthogroup analysis revealed the important roles of bacterial division and bacteriophage associated genes in RGM and secretion system related genes for better environmental adaptation in SGM. Notably, PCoA analysis of the top 20 genes/protein domains showed precision classification between RGM and SGM, indicating the credibility of our screening/classification strategies. Discussion: Overall, our findings shed light on differential underlying molecular mechanisms in survival state, adaptation and pathogenicity between RGM and SGM, show the potential for our comparative genomic pipeline to investigate differential genes/protein domains at whole genomic level across different bacterial species on a large scale, and provide an important reference and improved understanding of NTM.

15.
Arch Virol ; 157(9): 1719-27, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22674341

RESUMO

MicroRNAs are key players in the regulation of gene expression by posttranscriptional suppression. They are involved in physiological processes, and thus their deregulation may contribute to the development of diseases and progression of cancer. Virus-encoded microRNAs and microRNAs of host origin play an important role in controlling the virus life cycle and immunity. The aim of this study was to determine the effect of vaccinia virus (VACV) infection on the expression of host-encoded microRNAs. A marked general suppression of most microRNAs in the infected cells was observed within 24 hours after VACV infection of a number of cell types. We demonstrate that this suppression was associated with abrogation of expression of the Dicer1 enzyme, which is a key enzyme in the generation of microRNAs.


Assuntos
Interações Hospedeiro-Patógeno , MicroRNAs/antagonistas & inibidores , Vaccinia virus/patogenicidade , RNA Helicases DEAD-box/antagonistas & inibidores , Células HeLa , Humanos , Ribonuclease III/antagonistas & inibidores , Vaccinia virus/crescimento & desenvolvimento
16.
Planta Med ; 78(8): 838-42, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22495440

RESUMO

Khat (Catha edulis Forsk.) is a perennial shrub whose young leaves are chewed for their psychostimulating and anorectic properties. The main active principles of khat are believed to be the phenylpropylamino alkaloids, primarily (-)-cathinone [(S)-α-aminopropiophenone], (+)-cathine [(1S)(2S)-norpseudoephedrine], and (-)-norephedrine [(1R)(2S)-norephedrine]. GC-MS analyses of young leaf extracts indicated the presence of two oxazolidine derivatives, 2,4-dimethyl-5-phenyloxazolidine and 4-methyl-2-(trans-1-pentenyl)-5-phenyloxazolidine. To ascertain the chemical identity of these compounds, we synthesized the putative compounds by condensation of norephedrine and acetaldehyde or trans-2-hexenal, respectively. Spectroscopic analyses (GC-MS, NMR) of the structures of these synthetic compounds showed them to have identical retention indexes and mass spectra characteristic to 2,4-dimethyl-5-phenyloxazolidine and 4-methyl-2-(trans-1-pentenyl)-5-phenyloxazolidine. Marked differences in the ratios between each of these two norephedrine oxazolidine derivatives and total phenylpropylamino alkaloids were found among thirteen different khat accessions further indicating polymorphism in alkaloid ratios and content in C. edulis.


Assuntos
Catha/química , Efedrina/análogos & derivados , Oxazóis/isolamento & purificação , Plantas Medicinais/química
17.
Nucleic Acids Res ; 38(5): 1515-30, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20008508

RESUMO

Throughout evolution, eukaryotic genomes have been invaded by transposable elements (TEs). Little is known about the factors leading to genomic proliferation of TEs, their preferred integration sites and the molecular mechanisms underlying their insertion. We analyzed hundreds of thousands nested TEs in the human genome, i.e. insertions of TEs into existing ones. We first discovered that most TEs insert within specific 'hotspots' along the targeted TE. In particular, retrotransposed Alu elements contain a non-canonical single nucleotide hotspot for insertion of other Alu sequences. We next devised a method for identification of integration sequence motifs of inserted TEs that are conserved within the targeted TEs. This method revealed novel sequences motifs characterizing insertions of various important TE families: Alu, hAT, ERV1 and MaLR. Finally, we performed a global assessment to determine the extent to which young TEs tend to nest within older transposed elements and identified a 4-fold higher tendency of TEs to insert into existing TEs than to insert within non-TE intergenic regions. Our analysis demonstrates that TEs are highly biased to insert within certain TEs, in specific orientations and within specific targeted TE positions. TE nesting events also reveal new characteristics of the molecular mechanisms underlying transposition.


Assuntos
Sequências Repetitivas Dispersas , Elementos Alu , Sequência de Bases , DNA/química , Evolução Molecular , Genoma Humano , Genômica/métodos , Humanos , Modelos Genéticos
18.
Nucleic Acids Res ; 38(18): 6234-46, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20483914

RESUMO

MicroRNAs (miRNAs) are ∼22-nt long, non-coding RNAs that regulate gene silencing. It is known that many human miRNAs are deregulated in numerous types of tumors. Here we report the sequencing of small RNAs (17-25 nt) from 23 breast, bladder, colon and lung tumor samples using high throughput sequencing. We identified 49 novel miRNA and miR-sized small RNAs. We further validated the expression of 10 novel small RNAs in 31 different types of blood, normal and tumor tissue samples using two independent platforms, namely microarray and RT-PCR. Some of the novel sequences show a large difference in expression between tumor and tumor-adjacent tissues, between different tumor stages, or between different tumor types. We also report the identification of novel small RNA classes in human: highly expressed small RNA derived from Y-RNA and endogenous siRNA. Finally, we identified dozens of new miRNA sequence variants that demonstrate the existence of miRNA-related SNP or post-transcriptional modifications. Our work extends the current knowledge of the tumor small RNA transcriptome and provides novel candidates for molecular biomarkers and drug targets.


Assuntos
MicroRNAs/metabolismo , Neoplasias/genética , RNA Neoplásico/metabolismo , RNA não Traduzido/metabolismo , Humanos , MicroRNAs/química , Neoplasias/metabolismo , RNA Neoplásico/química , RNA não Traduzido/química , Análise de Sequência de RNA
19.
Nat Commun ; 12(1): 3743, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145238

RESUMO

The extracellular Contractile Injection System (eCIS) is a toxin-delivery particle that evolved from a bacteriophage tail. Four eCISs have previously been shown to mediate interactions between bacteria and their invertebrate hosts. Here, we identify eCIS loci in 1,249 bacterial and archaeal genomes and reveal an enrichment of these loci in environmental microbes and their apparent absence from mammalian pathogens. We show that 13 eCIS-associated toxin genes from diverse microbes can inhibit the growth of bacteria and/or yeast. We identify immunity genes that protect bacteria from self-intoxication, further supporting an antibacterial role for some eCISs. We also identify previously undescribed eCIS core genes, including a conserved eCIS transcriptional regulator. Finally, we present our data through an extensive eCIS repository, termed eCIStem. Our findings support eCIS as a toxin-delivery system that is widespread among environmental prokaryotes and likely mediates antagonistic interactions with eukaryotes and other prokaryotes.


Assuntos
Archaea/genética , Bactérias/genética , Proteínas Contráteis/genética , Sistemas de Translocação de Proteínas/genética , Toxinas Biológicas/metabolismo , Animais , Archaea/metabolismo , Bactérias/metabolismo , Bacteriófagos/metabolismo , Fungos , Nematoides , Sistemas de Translocação de Proteínas/metabolismo , Transporte Proteico/fisiologia , Toxinas Biológicas/genética
20.
mBio ; 12(3): e0026221, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34061601

RESUMO

The type VI secretion system (T6SS) is a bacterial nanoscale weapon that delivers toxins into prey ranging from bacteria and fungi to animal hosts. The cytosolic contractile sheath of the system wraps around stacked hexameric rings of Hcp proteins, which form an inner tube. At the tip of this tube is a puncturing device comprising a trimeric VgrG topped by a monomeric PAAR protein. The number of toxins a single system delivers per firing event remains unknown, since effectors can be loaded on diverse sites of the T6SS apparatus, notably the inner tube and the puncturing device. Each VgrG or PAAR can bind one effector, and additional effector cargoes can be carried in the Hcp ring lumen. While many VgrG- and PAAR-bound toxins have been characterized, to date, very few Hcp-bound effectors are known. Here, we used 3 known Pseudomonas aeruginosa Hcp proteins (Hcp1 to -3), each of which associates with one of the three T6SSs in this organism (H1-T6SS, H2-T6SS, and H3-T6SS), to perform in vivo pulldown assays. We confirmed the known interactions of Hcp1 with Tse1 to -4, further copurified a Hcp1-Tse4 complex, and identified potential novel Hcp1-bound effectors. Moreover, we demonstrated that Hcp2 and Hcp3 can shuttle T6SS cargoes toxic to Escherichia coli. Finally, we used a Tse1-Bla chimera to probe the loading strategy for Hcp passengers and found that while large effectors can be loaded onto Hcp, the formed complex jams the system, abrogating T6SS function. IMPORTANCE The type VI secretion system (T6SS) is an effective weapon used by bacteria to outgrow or kill competitors. It can be used by endogenous commensal microbiota to prevent invasion by pathogens or by pathogens to overcome resident flora and successfully colonize a host or a specific environmental niche. The T6SS is a key contributor to this continuous arms race between organisms as it delivers a multitude of toxins directed at essential processes, such as nucleic acid synthesis and replication, cell wall and membrane integrity, protein synthesis, or cofactor abundance. Many T6SS toxins with unknown function remain to be discovered, whose yet-uncharacterized targets could be exploited for antimicrobial drug design. The systematic search for these toxins is not facilitated by the presence of readily recognizable T6SS motifs, and unbiased screening approaches are thus required. Here, we successfully used a known shuttle for cargo T6SS effectors, Hcp, as bait to identify uncharacterized toxins.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa/genética , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Transporte Biológico , Escherichia coli/metabolismo , Pseudomonas aeruginosa/química , Sistemas de Secreção Tipo VI/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA