Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 364
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(7): 3150-3165, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36869674

RESUMO

DNA double-strand breaks (DSBs) are functionally linked to genomic instability in spermatocytes and to male infertility. The heavy metal cadmium (Cd) is known to induce DNA damage in spermatocytes by unknown mechanisms. Here, we showed that Cd ions impaired the canonical non-homologous end-joining (NHEJ) repair pathway, but not the homologous recombination (HR) repair pathway, through stimulation of Ser2056 and Thr2609 phosphorylation of DNA-PKcs at DSB sites. Hyper-phosphorylation of DNA-PKcs led to its premature dissociation from DNA ends and the Ku complex, preventing recruitment of processing enzymes and further ligation of DNA ends. Specifically, this cascade was initiated by the loss of PP5 phosphatase activity, which results from the dissociation of PP5 from its activating ions (Mn), that is antagonized by Cd ions through a competitive mechanism. In accordance, in a mouse model Cd-induced genomic instability and consequential male reproductive dysfunction were effectively reversed by a high dosage of Mn ions. Together, our findings corroborate a protein phosphorylation-mediated genomic instability pathway in spermatocytes that is triggered by exchange of heavy metal ions.


Assuntos
Cádmio , Instabilidade Genômica , Infertilidade Masculina , Espermatócitos , Animais , Humanos , Masculino , Camundongos , Cádmio/toxicidade , DNA/metabolismo , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Instabilidade Genômica/efeitos dos fármacos , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Íons/metabolismo , Fosforilação , Reparo de DNA por Recombinação , Espermatócitos/efeitos dos fármacos
2.
Biochem Biophys Res Commun ; 691: 149334, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38042034

RESUMO

The combination of carbon ion radiotherapy and anti-PD-1 antibody represents a new approach to treating thoracic tumors. However, the lung damage caused by this combination therapy may limit its use, and the potential mechanisms for this are worthy of investigation. The objective of this research was to examine the potential involvement of repulsive guidance molecule b (RGMb) in lung damage promoted by the utilization of carbon ion irradiation combined with an anti-PD-1 antibody. The C57BL/6 mice have been randomly separated into four distinct groups: control, anti-PD-1, whole thorax carbon ion irradiation, and irradiation in combination with anti-PD-1 treatment groups (combination group). Detection of pathological changes in lung tissue using HE staining. Detection of pulmonary fibrosis by Masson staining and the hydroxyproline assay. ELISA to detect TNF-α, TGF-ß, IL-6, and IL-1ß expression levels within lung homogenates. The expression of RGMb, p38 MAPK, and Erk1/2 pathways was detected using a fully automated digital Western blotting system WES (ProteinSimple, USA). Flow cytometry was employed to analyze tissue-resident memory T cells (TRM) within the lung. Subsequently, the siRNA gene was employed to induce the downregulation of RGMb in mice in order to validate the involvement of RGMb in radiation-immune lung injury. The present study observed a significant increase in both inflammatory and fibrotic indicators within the mice group's lung tissue that received the combination treatment. The combination group exhibited elevated levels of TGF-ß, TNF-α, IL-6, and IL-1ß in lung homogenates. Anti-PD-1 antibody and carbon ion irradiation, upregulated RGMb, phospho-p38 MAPK and phospho-Erk1/2. The results obtained from the flow cytometry analysis indicated that the combination group was significantly higher in the number of clonal expansion TRMs, which were predominantly characterized by the expression of CD8+CD103+CD69-TRMs. The downregulate of RGMb via siRNA in mice resulted in a decrease in phospho-p38 MAPK and phospho-Erk1/2. The combination group exhibited a reduction in TNF-α, TGF-ß, IL-6, and IL-1ß in their lung tissues, and the number of CD8+CD103+CD69-TRM was significantly reduced. The combination group exhibited a significant improvement in inflammatory and fibrotic indicators within the lung tissues. Anti-PD-1 antibody and carbon ion irradiation synergistically regulate RGMb, leading to strong clonal expansion of lung TRM through the p38 MAPK and Erk1/2 pathways. The present study offers valuable insights into the treatment of lung injury due to the combined administration of carbon ion radiotherapy and anti-PD-1 antibody therapy.


Assuntos
Lesão Pulmonar , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Camundongos , Fator de Necrose Tumoral alfa , Interleucina-6 , Camundongos Endogâmicos C57BL , Fator de Crescimento Transformador beta , RNA Interferente Pequeno , Carbono
3.
Brain ; 146(10): 4191-4199, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37170631

RESUMO

COQ7 encodes a hydroxylase responsible for the penultimate step of coenzyme Q10 (CoQ10) biosynthesis in mitochondria. CoQ10 is essential for multiple cellular functions, including mitochondrial oxidative phosphorylation, lipid metabolism, and reactive oxygen species homeostasis. Mutations in COQ7 have been previously associated with primary CoQ10 deficiency, a clinically heterogeneous multisystemic mitochondrial disorder. We identified COQ7 biallelic variants in nine families diagnosed with distal hereditary motor neuropathy with upper neuron involvement, expending the clinical phenotype associated with defects in this gene. A recurrent p.Met1? change was identified in five families from Brazil with evidence of a founder effect. Fibroblasts isolated from patients revealed a substantial depletion of COQ7 protein levels, indicating protein instability leading to loss of enzyme function. High-performance liquid chromatography assay showed that fibroblasts from patients had reduced levels of CoQ10, and abnormal accumulation of the biosynthetic precursor DMQ10. Accordingly, fibroblasts from patients displayed significantly decreased oxygen consumption rates in patients, suggesting mitochondrial respiration deficiency. Induced pluripotent stem cell-derived motor neurons from patient fibroblasts showed significantly increased levels of extracellular neurofilament light protein, indicating axonal degeneration. Our findings indicate a molecular pathway involving CoQ10 biosynthesis deficiency and mitochondrial dysfunction in patients with distal hereditary motor neuropathy. Further studies will be important to evaluate the potential benefits of CoQ10 supplementation in the clinical outcome of the disease.


Assuntos
Doenças Mitocondriais , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Neurônios Motores/metabolismo , Mutação/genética , Ubiquinona/genética
4.
BMC Cardiovasc Disord ; 24(1): 71, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267845

RESUMO

BACKGROUND: As a novel circRNA, BTBD7_hsa_circ_0000563 has not been fully investigated in coronary artery disease (CAD). Our aim is to reveal the possible functional role and regulatory pathway of BTBD7_hsa_circ_0000563 in CAD via exploring genes combined with BTBD7_hsa_circ_0000563. METHODS: A total of 45 peripheral blood mononuclear cell (PBMC) samples of CAD patients were enrolled. The ChIRP-RNAseq assay was performed to directly explore genes bound to BTBD7_hsa_circ_0000563. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted to reveal possible functions of these genes. The interaction network was constructed by the STRING database and the Cytoscape software. The Cytoscape software were used again to identify clusters and hub genes of genes bound to BTBD7_hsa_circ_0000563. The target miRNAs of hub genes were predicted via online databases. RESULTS: In this study, a total of 221 mRNAs directly bound to BTBD7_hsa_circ_0000563 were identified in PBMCs of CAD patients via ChIRP-RNAseq. The functional enrichment analysis revealed that these mRNAs may participate in translation and necroptosis. Moreover, the interaction network showed that there may be a close relationship between these mRNAs. Eight clusters can be further subdivided from the interaction network. RPS3 and RPSA were identified as hub genes and hsa-miR-493-5p was predicted to be the target miRNA of RPS3. CONCLUSIONS: BTBD7_hsa_circ_0000563 and mRNAs directly bound to it may influence the initiation and progression of CAD, among which RPS3 and RPSA may be hub genes. These findings may provide innovative ideas for further research on CAD.


Assuntos
Doença da Artéria Coronariana , MicroRNAs , Humanos , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/genética , RNA Circular/genética , Leucócitos Mononucleares , Biologia Computacional , RNA Mensageiro/genética , Proteínas Adaptadoras de Transdução de Sinal , MicroRNAs/genética
5.
Environ Res ; 251(Pt 1): 118566, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447606

RESUMO

Both g-C3N4 and Bi2O2CO3 are good photocatalysts for the removal of antibiotic pollutants, but their morphological modulation and catalytic performance need to be further improved. In this study, the calcination-hydrothermal method is used to prepare a O-g-C3N4@Bi2O2CO3 (CN@BCO) composite photocatalyst from dicyandiamide and bismuth nitrate. The prepared catalyst is characterized through various methods, including X-ray diffraction (XRD) and transmission electron microscopy (TEM). Further, the effects of different parameters, such as catalyst concentration and initial pH of the reaction solution, on its photocatalytic activity are investigated. The results show that the CN@BCO sample achieves an optimal degradation rate of 98.1% for tetracycline hydrochloride (TCH) with a concentration of 20 mg/L and a removal rate of 69.4% for total organic carbon (TOC) at 40 min. The quenching experiments show that ·O2-, h+, and ·OH participate in the photocatalytic process, with ·O2- being the most dominant active species. The toxicity of the predicted TCH degradation intermediates is analyzed using Toxicity Estimation Software Tool (TEST). Overall, the CN@BCO composite exhibits excellent photocatalytic performance, making it a promising candidate for environmental purification and wastewater treatment.


Assuntos
Bismuto , Tetraciclina , Águas Residuárias , Poluentes Químicos da Água , Tetraciclina/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Águas Residuárias/química , Bismuto/química , Catálise , Antibacterianos/química , Nanofios/química , Compostos de Nitrogênio/química , Nitrilas/química , Porosidade , Grafite
6.
Pestic Biochem Physiol ; 201: 105876, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685244

RESUMO

Black shank, a devastating disease in tobacco production worldwide, is caused by the oomycete plant pathogen Phytophthora nicotianae. Fluopicolide is a pyridinylmethyl-benzamides fungicide with a unique mechanism of action and has been widely used for controlling a variety of oomycetes such as Plasmopara viticola, Phytophthora infestans, Pseudoperonospora cubensis, P. nicotianae and Bremia lactucae. However, the fluopicolide-resistance risk and molecular basis in P. nicotianae have not been reported. In this study, the sensitivity profile of 141 P. nicotianae strains to fluopicolide was determined, with a mean median effective concentration (EC50) value of 0.12 ± 0.06µg/mL. Five stable fluopicolide-resistant mutants of P. nicotianae were obtained by fungicide adaptation, and the compound fitness index of these resistant mutants were lower than that of their parental isolates. Additionally, cross-resistance tests indicated that the sensitivity of fluopicolide did not correlate with other oomycete fungicides, apart from fluopimomide. DNA sequencing revealed two point mutations, G765E and N769Y, in the PpVHA-a protein in the fluopicolide-resistant mutants. Transformation and expression of PpVHA-a genes carrying G765E and N769Y in the sensitive wild-type isolate confirmed that it was responsible for fluopicolide resistance. These results suggest that P. nicotianae has a low to medium resistance risk to fluopicolide in laboratory and that point mutations, G765E and N769Y, in PpVHA-a are associated with the observed fluopicolide resistance.


Assuntos
Fungicidas Industriais , Mutação , Nicotiana , Phytophthora , Doenças das Plantas , Phytophthora/efeitos dos fármacos , Phytophthora/genética , Nicotiana/microbiologia , Fungicidas Industriais/farmacologia , Doenças das Plantas/microbiologia , Benzamidas/farmacologia , Piridinas/farmacologia , Farmacorresistência Fúngica/genética
7.
J Obstet Gynaecol ; 44(1): 2361849, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38920019

RESUMO

BACKGROUND: Endometrial cancer is a kind of gynaecological cancer. S100A2 is a newfound biomarker to diagnose endometrial cancer. This study was to investigate the role of S100A2 on regulating migration and invasion of endometrial cancer. METHODS: The mRNA and protein levels of S100A2 were obtained by quantitative real-time polymerase chain reaction, immunohistochemistry and western blot methods. Cell viability was measured by the Cell Counting Kit-8 assay. Cell migration and invasion were quantified using transwell assays. Western blot assay was conducted to quantify protein expressions of epithelial to mesenchymal transition-related proteins (N-cadherin and E-cadherin). Furthermore, in vivo tumour formation experiments were performed to evaluate the role of S100A2 on tumour xenografts. RESULTS: S100A2 was significantly up-regulated in endometrial cancer tissues. Knockdown of S100A2 inhibited cell viability, migration and invasion of endometrial cancer cells. Meanwhile, STING pathway was activated by the inhibited S100A2. STING inhibitor C-176 significantly reversed the effects of S100A2 knockdown on aggressive behaviours of endometrial cancer cells. Inhibition of S100A2 dramatically suppresses the tumour growth in vivo. CONCLUSIONS: S100A2 functions as an oncogene in endometrial cancer. Targeting S100A2 may be a promising therapeutic method to treat endometrial carcinoma.


This study was to investigate the role of S100A2 on regulating migration and invasion of endometrial cancer. S100A2 was significantly up-regulated in endometrial cancer tissues. Knockdown of S100A2 inhibited cell viability, migration and invasion of endometrial cancer cells. Meanwhile, STING pathway was activated by the inhibited S100A2. STING inhibitor C-176 significantly reversed the effects of S100A2 knockdown on aggressive behaviours of endometrial cancer cells. Inhibition of S100A2 dramatically suppresses the tumour growth in vivo. S100A2 functions as an oncogene in endometrial cancer. Targeting S100A2 may be a promising therapeutic method to treat endometrial carcinoma.


Assuntos
Movimento Celular , Neoplasias do Endométrio , Proteínas de Membrana , Invasividade Neoplásica , Proteínas S100 , Feminino , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Neoplasias do Endométrio/metabolismo , Humanos , Proteínas S100/metabolismo , Proteínas S100/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Linhagem Celular Tumoral , Animais , Movimento Celular/genética , Camundongos , Técnicas de Silenciamento de Genes , Transição Epitelial-Mesenquimal/genética , Transdução de Sinais , Regulação para Cima , Sobrevivência Celular , Fatores Quimiotáticos
8.
Small ; 19(14): e2206716, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36604987

RESUMO

The mutations of bacteria due to the excessive use of antibiotics, and generation of antibiotic-resistant bacteria have made the development of new antibacterial compounds a necessity. MXenes have emerged as biocompatible transition metal carbide structures with extensive biomedical applications. This is related to the MXenes' unique combination of properties, including multifarious elemental compositions, 2D-layered structure, large surface area, abundant surface terminations, and excellent photothermal and photoelectronic properties. The focus of this review is the antibacterial application of MXenes, which has attracted the attention of researchers since 2016. A quick overview of the synthesis strategies of MXenes is provided and then summarizes the effect of various factors (including structural properties, optical properties, surface charges, flake size, and dispersibility) on the biocidal activity of MXenes. The main mechanisms for deactivating bacteria by MXenes are discussed in detail including rupturing of the bacterial membrane by sharp edges of MXenes nanoflakes, generating the reactive oxygen species (ROS), and photothermal deactivating of bacteria. Hybridization of MXenes with other organic and inorganic materials can result in materials with improved biocidal activities for different applications such as wound dressings and water purification. Finally, the challenges and perspectives of MXene nanomaterials as biocidal agents are presented.


Assuntos
Antibacterianos , Nanoestruturas , Bandagens , Mutação
9.
Acta Neuropathol ; 145(4): 479-496, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36799992

RESUMO

DTNA encodes α-dystrobrevin, a component of the macromolecular dystrophin-glycoprotein complex (DGC) that binds to dystrophin/utrophin and α-syntrophin. Mice lacking α-dystrobrevin have a muscular dystrophy phenotype, but variants in DTNA have not previously been associated with human skeletal muscle disease. We present 12 individuals from four unrelated families with two different monoallelic DTNA variants affecting the coiled-coil domain of α-dystrobrevin. The five affected individuals from family A harbor a c.1585G > A; p.Glu529Lys variant, while the recurrent c.1567_1587del; p.Gln523_Glu529del DTNA variant was identified in the other three families (family B: four affected individuals, family C: one affected individual, and family D: two affected individuals). Myalgia and exercise intolerance, with variable ages of onset, were reported in 10 of 12 affected individuals. Proximal lower limb weakness with onset in the first decade of life was noted in three individuals. Persistent elevations of serum creatine kinase (CK) levels were detected in 11 of 12 affected individuals, 1 of whom had an episode of rhabdomyolysis at 20 years of age. Autism spectrum disorder or learning disabilities were reported in four individuals with the c.1567_1587 deletion. Muscle biopsies in eight affected individuals showed mixed myopathic and dystrophic findings, characterized by fiber size variability, internalized nuclei, and slightly increased extracellular connective tissue and inflammation. Immunofluorescence analysis of biopsies from five affected individuals showed reduced α-dystrobrevin immunoreactivity and variably reduced immunoreactivity of other DGC proteins: dystrophin, α, ß, δ and γ-sarcoglycans, and α and ß-dystroglycans. The DTNA deletion disrupted an interaction between α-dystrobrevin and syntrophin. Specific variants in the coiled-coil domain of DTNA cause skeletal muscle disease with variable penetrance. Affected individuals show a spectrum of clinical manifestations, with severity ranging from hyperCKemia, myalgias, and exercise intolerance to childhood-onset proximal muscle weakness. Our findings expand the molecular etiologies of both muscular dystrophy and paucisymptomatic hyperCKemia, to now include monoallelic DTNA variants as a novel cause of skeletal muscle disease in humans.


Assuntos
Transtorno do Espectro Autista , Distrofias Musculares , Neuropeptídeos , Camundongos , Humanos , Animais , Criança , Distrofina/genética , Distrofina/metabolismo , Transtorno do Espectro Autista/metabolismo , Distrofias Musculares/metabolismo , Distroglicanas/metabolismo , Processamento Alternativo , Músculo Esquelético/patologia , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Proteínas Associadas à Distrofina/genética , Proteínas Associadas à Distrofina/metabolismo
10.
Cell Biol Int ; 47(1): 260-272, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36200528

RESUMO

The incidence rate of renal cell carcinoma (RCC) is about 3% of all adult cancers. Of these, the Kidney clear cell renal cell carcinoma (KIRC) is the most common type, accounting for about 70%-75% of RCC. KIRC is difficult to be detected in time clinically. KIRC still has no effective treatment at this stage. We combined high-throughput bioinformatics analysis to obtained the structural sequence transcriptome data, relevant clinical information, and m6 A gene map of KIRC patients from genomics TCGA database. Pearson's correlation analysis was used to explore m6 A related gene long noncoding RNAs (lncRNAs), and then univariate Cox regression analysis was performed to screen the prognostic role of KIRC patients. Lasso-Cox regression was performed to establish the lncRNAs risk model associated with m6 A.LINC02154 and AC016773.2, Z98200.2, AL161782.1, EMX2OS, AC021483.2, CD27-AS1, AC006213.3 were iidentif. Compared with the low-risk group, the overall survival of patients in the high-risk group was significantly worse. Analyzing whether there are differences in immune cells between high-risk and low-risk subgroups. There were CD4 memory resting, Monocytes, Macrophages M1, Dendritic cells activated, Mast cells resting, which had higher infiltrations in the low-risk group. We performed Go enrichment analysis, Kyoto Encyclopedia of Genes and Genomes enrichment analysis and gene set enrichment analysis enrichment analysis. Overall, our results suggest that the component of m6A-related lncRNAs in the prognostic signal may be a key mediator in the immune microenvironment of KIRC, which represents a promising therapeutic effect.


Assuntos
Carcinoma de Células Renais , RNA Longo não Codificante , Adulto , Humanos , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/genética , Biologia Computacional/métodos , Rim , Neoplasias Renais/diagnóstico , Neoplasias Renais/genética , RNA Longo não Codificante/genética , Microambiente Tumoral , Prognóstico , Biomarcadores Tumorais/análise , Análise de Regressão
11.
Microb Ecol ; 86(2): 825-842, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36585490

RESUMO

Compared to free-living viruses (< 0.22 m) in the ocean, planktonic viruses in the "cellular fraction" (0.22 ~ 3.0 µm) are now far less well understood, and the differences between them remain largely unexplored. Here, we revealed that even in the same seawater samples, the "cellular fraction" comprised significantly distinct virus communities from the free virioplankton, with only 13.87% overlap in viral contigs at the species level. Compared to the viral genomes deposited in NCBI RefSeq database, 99% of the assembled viral genomes in the "cellular fraction" represented novel genera. Notably, the assembled (near-) complete viral genomes within the "cellular fraction" were significantly larger than that in the "viral fraction," and the "cellular fraction" contained three times more species of giant viruses or jumbo phages with genomes > 200 kb than the "viral fraction." The longest complete genomes of jumbo phage (~ 252 kb) and giant virus (~ 716 kb) were both detected only in the "cellular fraction." Moreover, a relatively higher proportion of proviruses were predicted within the "cellular fraction" than "viral fraction." Besides the substantial divergence in viral community structure, the different fractions also contained their unique viral auxiliary metabolic genes; e.g., those potentially participating in inorganic carbon fixation in deep sea were detected only in the "cellular-fraction" viromes. In addition, there was a considerable divergence in the community structure of both "cellular fraction" and "viral fraction" viromes between the surface and deep-sea habitats, suggesting that they might have similar environmental adaptation properties. The findings deepen our understanding of the complexity of viral community structure and function in the ocean.


Assuntos
Bacteriófagos , Vírus , Plâncton/genética , Vírus/genética , Água do Mar , Genoma Viral , Oceanos e Mares , Metagenoma , Metagenômica
12.
Environ Sci Technol ; 57(45): 17278-17290, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37919873

RESUMO

Mercury, a pervasive global pollutant, primarily enters the atmosphere through human activities and legacy emissions from the land and oceans. A significant portion of this mercury subsequently settles on land through vegetation uptake. Characterizing mercury storage and distribution within vegetation is essential for comprehending regional and global mercury cycles. We conducted an unprecedented large-scale aboveground vegetation mercury survey across the expansive Tibetan Plateau. We find that mosses (31.1 ± 0.5 ng/g) and cushion plants (15.2 ± 0.7 ng/g) outstood high mercury concentrations. Despite exceptionally low anthropogenic mercury emissions, mercury concentrations of all biomes exceeded at least one-third of their respective global averages. While acknowledging the role of plant physiological factors, statistical models emphasize the predominant impact of atmospheric mercury on driving variations in mercury concentrations. Our estimations indicate that aboveground vegetation on the plateau accumulates 32-12+21 Mg (interquartile range) mercury. Forests occupy the highest biomass and store 82% of mercury, while mosses, representing only 3% of the biomass, disproportionally contribute 13% to mercury storage and account for 43% (2.5-1.4+3.0 Mg/year) of annual mercury assimilation by vegetation. Additionally, our study underscores that extrapolating aboveground vegetation mercury storage from lower-altitude regions to the Tibetan Plateau can lead to substantial overestimation, inspiring further exploration in alpine ecosystems worldwide.


Assuntos
Mercúrio , Humanos , Mercúrio/análise , Ecossistema , Tibet , Monitoramento Ambiental , Plantas
13.
Anal Bioanal Chem ; 415(9): 1607-1625, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36719440

RESUMO

Organic field-effect transistors (OFETs) have been proposed beyond three decades while becoming a research hotspot again in recent years because of the fast development of flexible electronics. Many novel flexible OFETs-based devices have been reported in these years. Among these devices, flexible OFETs-based sensors made great strides because of the extraordinary sensing capability of FET. Most of these flexible OFETs-based sensors were designed for biological applications due to the advantages of flexibility, reduced complexity, and lightweight. This paper reviews the materials, fabrications, and applications of flexible OFETs-based biosensors. Besides, the challenges and opportunities of the flexible OFETs-based biosensors are also discussed.

14.
J Nanobiotechnology ; 21(1): 189, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308908

RESUMO

INTRODUCTION: Ischemic diseases caused by diabetes continue to pose a major health challenge and effective treatments are in high demand. Mesenchymal stem cells (MSCs) derived exosomes have aroused broad attention as a cell-free treatment for ischemic diseases. However, the efficacy of exosomes from adipose-derived mesenchymal stem cells (ADSC-Exos) in treating diabetic lower limb ischemic injury remains unclear. METHODS: Exosomes were isolated from ADSCs culture supernatants by differential ultracentrifugation and their effect on C2C12 cells and HUVECs was assessed by EdU, Transwell, and in vitro tube formation assays separately. The recovery of limb function after ADSC-Exos treatment was evaluated by Laser-Doppler perfusion imaging, limb function score, and histological analysis. Subsequently, miRNA sequencing and rescue experiments were performed to figure out the responsible miRNA for the protective role of ADSC-Exos on diabetic hindlimb ischemic injury. Finally, the direct target of miRNA in C2C12 cells was confirmed by bioinformatic analysis and dual-luciferase report gene assay. RESULTS: ADSC-Exos have the potential to promote proliferation and migration of C2C12 cells and to promote HUVECs angiogenesis. In vivo experiments have shown that ADSC-Exos can protect ischemic skeletal muscle, promote the repair of muscle injury, and accelerate vascular regeneration. Combined with bioinformatics analysis, miR-125b-5p may be a key molecule in this process. Transfer of miR-125b-5p into C2C12 cells was able to promote cell proliferation and migration by suppressing ACER2 overexpression. CONCLUSION: The findings revealed that miR-125b-5p derived from ADSC-Exos may play a critical role in ischemic muscle reparation by targeting ACER2. In conclusion, our study may provide new insights into the potential of ADSC-Exos as a treatment option for diabetic lower limb ischemia.


Assuntos
Diabetes Mellitus , Células-Tronco Mesenquimais , Animais , Ceramidase Alcalina , Isquemia , Membro Posterior
15.
Immun Ageing ; 20(1): 66, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990246

RESUMO

BACKGROUND: CircZBTB46 has been identified as being associated with the risk of coronary artery disease (CAD) and has the potential to be a diagnostic biomarker for CAD. However, the specific function and detailed mechanism of circZBTB46 in CAD are still unknown. METHODS: The expression levels and properties of circRNAs were examined using qRT‒PCR, RNA FISH, and subcellular localization analysis. ApoE-/- mice fed a high-fat diet were used to establish an atherosclerosis model. HE, Masson, and Oil Red O staining were used to analyze the morphological features of the plaque. CCK-8, Transwell, and wound healing assays, and flow cytometric analysis were used to evaluate cell proliferation, migration, and apoptosis. RNA pull-down, silver staining, mass spectrometry analysis, and RNA-binding protein immunoprecipitation (RIP) were performed to identify the interacting proteins of circZBTB46. RESULTS: CircZBTB46 is highly conserved and is significantly upregulated in atherosclerotic lesions. Functional studies revealed that knockdown of circZBTB46 significantly decreased the atherosclerotic plaque area, attenuating the progression of atherosclerosis. In addition, silencing circZBTB46 inhibited cell proliferation and migration and induced apoptosis. Mechanistically, circZBTB46 physically interacted with hnRNPA2B1 and suppressed its degradation, thereby regulating cell functions and the formation of aortic atherosclerotic plaques. Additionally, circZBTB46 was identified as a functional mediator of PTEN-dependent regulation of the AKT/mTOR signaling pathway and thus affected cell proliferation and migration and induced apoptosis. CONCLUSION: Our study provides the first direct evidence that circZBTB46 functions as an important regulatory molecule for CAD progression by interacting with hnRNPA2B1 and regulating the PTEN/AKT/mTOR pathway.

16.
Phytother Res ; 37(4): 1293-1308, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36751854

RESUMO

Citrus peel has long been used in traditional medicine in Asia to treat common cold, dyspepsia, cough, and phlegm. Narirutin-a flavanone-7-O-glycoside-is the major flavonoid in citrus peel, and has anti-oxidative, anti-allergic, and anti-inflammatory activities. However, the anti-inflammatory mechanism of narirutin has not been fully elucidated. This study is aimed to investigate the effects of narirutin on the Nod-like receptor protein 3 (NLRP3)-mediated inflammatory response in vitro and in vivo, and determine the underlying mechanism. THP-1 differentiated macrophages and bone marrow-derived macrophages (BMDMs) were used for in vitro experiments, while dextran sulfate sodium (DSS)-induced colitis and alum-induced peritonitis mouse models were constructed to test inflammation in vivo. Narirutin suppressed secretion of interleukin (IL)-1ß and pyroptosis in lipopolysaccharide (LPS)/ATP-stimulated macrophages. Narirutin decreased the expression of NLRP3 and IL-1ß in the LPS-priming step through inhibition of NF-κB, MAPK and PI3K /AKT signaling pathways. Narirutin inhibited NLRP3-ASC interaction to suppress NLRP3 inflammasome assembly. Furthermore, oral administration of narirutin (300 mg/kg) alleviated inflammation symptoms in mice with peritonitis and colitis. These results suggest that narirutin exerts its anti-inflammatory activity by suppressing NLRP3 inflammasome activation via inhibition of the NLRP3 inflammasome priming processes and NLRP3-ASC interaction in macrophages.


Assuntos
Colite , Flavanonas , Peritonite , Animais , Camundongos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos , Flavanonas/farmacologia , Colite/induzido quimicamente , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Peritonite/metabolismo
17.
J Asian Nat Prod Res ; 25(4): 369-378, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35763370

RESUMO

Erysolin and its two metabolites which were found in blood, ERY-GSH and ERY-NAC, were synthesized by alkylation, amination, isothiocyanation and oxidation reactions from 1-bromo-4-chlorobutane and sodium methyl mercaptide. The reaction temperature, time, feed ratios and purification method were also optimized. The synthesis method was simple, green, safe and low-cost. Erysolin, ERY-GSH and ERY-NAC showed good antitumor activities against MCF-7, HeLa, HepG2, A549 and SW480 cells, which suggested that the antitumor mechanism of erysolin can also be clarified from its metabolites in addition to itself.


Assuntos
Antineoplásicos , Tiocianatos , Humanos , Tiocianatos/farmacologia , Células HeLa , Sulfonas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Proliferação de Células
18.
Geoderma ; 4322023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37928070

RESUMO

Inadvertent oral ingestion is an important exposure pathway of arsenic (As) containing soil and dust. Previous researches evidenced health risk of bioaccessible As from soil and dust, but it is unclear about As mobilization mechanisms in health implications from As exposure. In this study, we investigated As release behaviors and the solid-liquid interface reactions toward As(V)-containing iron minerals in simulated gastrointestinal bio-fluids. The maximum As release amount was 0.57 mg/L from As-containing goethite and 0.82 mg/L from As-containing hematite at 9 h, and the As bioaccessibility was 10.8% and 21.6%, respectively. The higher exposure risk from hematite-sorbed As in gastrointestinal fluid was found even though goethite initially contained more arsenate than hematite. Mechanism analysis revealed that As release was mainly coupled with acid dissolution and reductive dissolution of iron minerals. Proteases enhanced As mobilization and thus increased As bioaccessibility. The As(V) released and simultaneously transformed to high toxic As(III) by gastric pepsin, while As(V) reduction in intestine was triggered by pancreatin and freshly formed Fe(II) in gastric digests. CaCl2 reduced As bioaccessibility, indicating that calcium-rich food or drugs may be effective dietary strategies to reduce As toxicity. The results deepened our understanding of the As release mechanisms associated with iron minerals in the simulated gastrointestinal tract and supplied a dietary strategy to alleviate the health risk of incidental As intake.

19.
Bull Environ Contam Toxicol ; 110(4): 71, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36991215

RESUMO

Titanium dioxide nanoparticles (TiO2 NPs) are ubiquitous in the environment and enter the terrestrial food chain via plant uptake. However, plant uptake behaviors of TiO2 NPs remain elusive. Here, the uptake kinetics of TiO2 NPs by wheat (Triticum aestivum L.) seedlings and the effects on cation flux in roots were examined in a hydroponic system. Uptake rate of TiO2 NPs ranged from 119.0 to 604.2 mg kg- 1 h- 1 within 8 h exposure. NP uptake decreased by 83% and 47%, respectively, in the presence of sodium azide (NaN3) and carbonyl cyanide m-chlorophenylhydrazone (CCCP), indicating an energy-dependent uptake of TiO2 NPs. Moreover, accompanied with TiO2 NP uptake, net influx of Cd2+ decreased by 81%, while Na+ flux shifted from inflow to outflow at the meristematic zone of root. These findings provide valuable information for understanding plant uptake of TiO2 NPs.


Assuntos
Nanopartículas , Plântula , Triticum , Titânio , Cátions
20.
J Cell Mol Med ; 26(11): 3213-3222, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35582950

RESUMO

Oral-facial-digital syndrome (OFDS) is a multisystemic ciliopathic disorder with an autosomal recessive mode of inheritance. OFDS usually manifests with typical craniofacial anomalies and variable occurrence of polydactyly. Germline variants in CPLANE1 cause OFDS VI. In this study, we investigated a 26-year-old Chinese female patient who was 23+1  weeks pregnant. She had a history of adverse pregnancy outcomes with multiple foetal malformations. We performed ultrasonography and identified the foetus as having a posterior fossa Blake cyst and postaxial polydactyly. The patient decided to terminate her pregnancy, and further genetic molecular analysis was performed. We identified the aborted foetus as having postaxial polydactyly. Whole-exome sequencing identified a missense variant (c.3599C>T, p.A1200V) in exon 20 and a c.834+1G>T variant in exon 7 of CPLANE1 (NM_023073.3) in the foetus. Sanger sequencing confirmed that these variants came from the parents of the foetus. In this study, we investigated a family with OFDS VI through genetic testing and bioinformatics analysis, which provided powerful help for prenatal diagnosis. Then, we demonstrated that the cell migration rate and the number of cilia were decreased after interference with CPLANE1 expression in NIH/3T3 cells. After CPLANE1 knockdown, the Hh signalling pathway was inhibited, and the Hh pathway activator SAG reversed the inhibitory effect. This is the first report of a family with OFDS VI in the Chinese population.


Assuntos
Anormalidades Múltiplas , Síndromes Orofaciodigitais , Polidactilia , Anormalidades Múltiplas/genética , Adulto , Animais , Cílios/genética , Feminino , Dedos/anormalidades , Humanos , Camundongos , Síndromes Orofaciodigitais/diagnóstico , Síndromes Orofaciodigitais/genética , Gravidez , Dedos do Pé/anormalidades , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA