RESUMO
The relation between attention and memory has long been deemed important for understanding cognition, and it was heavily researched even in the first experimental psychology laboratory by Wilhelm Wundt and his colleagues. Since then, the importance of the relation between attention and memory has been explored in myriad subdisciplines of psychology, and we incorporate a wide range of these diverse fields. Here, we examine some of the practical consequences of this relation and summarize work with various methodologies relating attention to memory in the fields of working memory, long-term memory, individual differences, life-span development, typical brain function, and neuropsychological conditions. We point out strengths and unanswered questions for our own embedded processes view of information processing, which is used to organize a large body of evidence. Last, we briefly consider the relation of the evidence to a range of other theoretical views before drawing conclusions about the state of the field.
Assuntos
Cognição , Individualidade , Humanos , Memória de Longo PrazoRESUMO
Breast cancer (BC) has threatened women worldwide for a long time, and novel treatments are needed. Ferroptosis is a new form of regulated cell death that is a potential therapeutic target for BC. In this study, we identified Escin, a traditional Chinese medicine, as a possible supplement for existing chemotherapy strategies. Escin inhibited BC cell growth in vitro and in vivo, and ferroptosis is probable to be the main cause for Escin-induced cell death. Mechanistically, Escin significantly downregulated the protein level of GPX4, while overexpression of GPX4 could reverse the ferroptosis triggered by Escin. Further study revealed that Escin could promote G6PD ubiquitination and degradation, thus inhibiting the expression of GPX4 and contributing to the ferroptosis. Moreover, proteasome inhibitor MG132 or G6PD overexpression could partially reverse Escin-induced ferroptosis, when G6PD knockdown aggravated that. In vivo study also supported that downregulation of G6PD exacerbated tumor growth inhibition by Escin. Finally, our data showed that cell apoptosis was dramatically elevated by Escin combined with cisplatin in BC cells. Taken together, these results suggest that Escin inhibits tumor growth in vivo and in vitro via regulating the ferroptosis mediated by G6PD/GPX4 axis. Our findings provide a promising therapeutic strategy for BC.
Assuntos
Neoplasias da Mama , Ferroptose , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Escina , Ferroptose/genética , ApoptoseRESUMO
BACKGROUND: NOD-like receptor family pyrin domain containing 3 (NLRP3)-mediated macrophage pyroptosis plays an important role in sepsis-induced acute lung injury (ALI). Inhibition of pyroptosis may be a way to alleviate inflammation as well as tissue damage triggered after lipopolysaccharide (LPS) stimulation. The aim of the present study was to explore whether buformin (BF), a hypoglycemic agent, could alleviate sepsis-induced ALI by inhibiting pyroptosis. METHODS: Wildtype C57BL/6 mice were randomly divided into control group, BF group, LPS group and LPS+BF group. BF group and LPS+BF group were pretreated with BF at a dose of 25 mg/kg, and the changes were observed. In addition, BF was used to interfere with THP-1 cells. The therapeutic effect of BF has been verified by intraperitoneal injection of BF in vivo after LPS stimulation. RESULTS: Inflammation and injury was significantly reduced in BF pretreated mice, and the indexes related to pyroptosis were suppressed. The phosphorylation of AMP-activated protein kinase (AMPK) in lung tissues of mice in the BF and LPS+BF groups was significantly higher. In THP-1 cells, the AMPK inhibitor, Compound C was added to demonstrate that BF worked via AMPK to inhibit NLRP3 inflammasome. It was further demonstrated that BF up-regulated autophagy, which in turn promoted NLRP3 inflammasome degradation. On the other hand, BF decreased NLRP3 mRNA level by increasing nuclear factor-erythroid 2 related factor 2 (Nrf2). And BF showed a therapeutic effect after LPS challenge. CONCLUSION: Our study confirmed that BF inhibited NLRP3-mediated pyroptosis in sepsis-induced ALI by up-regulating autophagy and Nrf2 protein level through an AMPK-dependent pathway. This provides a new strategy for clinical mitigation of sepsis-induced ALI.
Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Buformina/uso terapêutico , Hipoglicemiantes/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Animais , Autofagia/efeitos dos fármacos , Buformina/farmacologia , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Humanos , Hipoglicemiantes/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Sepse/complicaçõesRESUMO
Non-muscle myosin IIA (NMIIA) has been reported to be involved in the carcinogenesis and malignant progression of various human tumors. However, the role and potential mechanism of NMIIA in the biological functions and apoptosis in colorectal cancer (CRC) remain elusive. In this study, we found that NMIIA was overexpressed in CRC tissues and significantly associated with poor survival in CRC patients. In addition, NMIIA promoted CRC cell proliferation and invasion via activating the AMPK/mTOR pathway in vitro, and NMIIA knockdown inhibited CRC growth in vivo. Meanwhile, NMIIA knockdown downregulated the CSCs markers (CD44 and CD133) expression in CRC cells. Furthermore, AMPK/mTOR pathway activation effectively reversed the NMIIA knockdown-induced inhibition of proliferation, invasion and stemness in CRC cells. Finally, NMIIA protects CRC cells from 5-FU-induced apoptosis and proliferation inhibition through the AMPK/mTOR pathway. Taken together, these results indicate that NMIIA plays a pivotal role in CRC growth and progression by regulating AMPK/mTOR pathway activation, and it may act as a novel therapeutic target prognostic factor in CRC.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Neoplasias Colorretais/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Idoso , Animais , Apoptose , Proliferação de Células , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Cadeias Pesadas de Miosina/genética , Células Tumorais CultivadasRESUMO
Electrons in quantum materials exhibiting coexistence of dispersionless (flat) bands piercing dispersive (steep) bands give rise to strongly correlated phenomena and are associated with unconventional superconductivity. We show that in twisted sandwiched graphene (TSWG)-a three-layer van der Waals heterostructure with a twisted middle layer-steep Dirac cones can coexist with dramatic band flattening at the same energy scale, if twisted by 1.5°. This phenomenon is not stable in the simplified continuum models. The key result of this Letter is that the flat bands become stable only as a consequence of lattice relaxation processes included in our atomistic calculations. Further on, external fields can change the relative energy offset between the Dirac cone vertex and the flat bands and enhance band hybridization, which could permit controlling correlated phases. Our work establishes twisted sandwiched graphene as a new platform for research into strongly interacting two-dimensional quantum matter.
RESUMO
Distant metastasis (DM) is the dominant negative prognosis for thyroid carcinoma. Radioactive iodine (RAI) therapy serves as an effective treatment for thyroid carcinoma. However, resistance to RAI occurs in patients with DMs. The present study aims to discriminate patients who may benefit from RAI. We extracted patients with thyroid cancer in the Surveillance, Epidemiology, and End Results program and analyzed thyroid cancer-specific survival after radiotherapy based on age and grade subgroups. A total of 1608 patients having DMs were eligible, including 521 (32.4%) cases with bone metastasis, 90 (5.6%) cases with brain metastasis, 158 (9.8%) cases with liver metastasis, 995 (61.9%) cases with lung metastasis, and 50 (3.1%) cases with other metastases. Advanced age, poor differentiation, follicular carcinoma, lymphatic metastasis, tumor size >10 mm, and extracapsular invasion are associated with pulmonary metastases. With respect to patients with DM, RAI therapy improved the survival in the age <45 years group and the well-/moderately differentiated group. For patients with pulmonary metastasis, RAI improved the survival in the higher grade group but did not have a strong effect in the better grade group. Our data indicate that the disparity of metastatic sites has different risk factors. Similarly, this finding indicates that RAI should be precisely applied to patients who undergo DM but are young and have well-/moderately differentiated tumors and may improve survival in pulmonary metastasis patients with poor grade tumors.
Assuntos
Radioisótopos do Iodo/uso terapêutico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/patologia , Adulto , Fatores Etários , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Fatores de Risco , Programa de SEER , Análise de Sobrevida , Neoplasias da Glândula Tireoide/mortalidade , Neoplasias da Glândula Tireoide/cirurgia , Carga TumoralRESUMO
We study the topological properties of magnon excitations in three-dimensional antiferromagnets, where the ground state configuration is invariant under time reversal followed by space inversion (PT symmetry). We prove that Dirac points and nodal lines, the former being the limiting case of the latter, are the generic forms of symmetry-protected band crossings between magnon branches. As a concrete example, we study a Heisenberg spin model for a "spin-web" compound, Cu_{3}TeO_{6}, and show the presence of the magnon Dirac points assuming a collinear magnetic structure. Upon turning on symmetry-allowed Dzyaloshinsky-Moriya interactions, which introduce a small noncollinearity in the ground state configuration, we find that the Dirac points expand into nodal lines with nontrivial Z_{2}-topological charge, a new type of nodal line not predicted in any materials so far.
RESUMO
Introduction: Early reading has gained significant attention in the academic community. With the increasing volume of literature on this subject, it has become crucial to assess the current research landscape and identify emerging trends. Methods: This study utilized the dynamic topic model to analyze a corpus of 1,638 articles obtained from the Web of Science Core Collection to furnish a lucid understanding of the prevailing research and forecast possible future directions. Results: Our in-depth assessment discerned 11 cardinal topics, among which notable ones were interventions' impacts on early reading competencies; foundational elements of early reading: phonological awareness, letters, and, spelling; and early literacy proficiencies in children with autism spectrum disorder. Although most topics have received consistent research attention, there has been a marked increase in some topics' popularity, such as foundational elements of early reading and early literary proficiencies in children with autism spectrum disorder. Conversely, other topics exhibited a downturn. Discussion: This analytical endeavor has yielded indispensable insights for scholars, decision-makers, and field practitioners, steering them toward pivotal research interrogatives, focal interest zones, and prospective research avenues. As per our extensive survey, this paper is a pioneering holistic purview of the seminal areas of early reading that highlights expected scholarly directions.
RESUMO
Nucleation is a fundamental process that determines the structure, morphology, and properties of crystalline materials, and is difficult to control because it is unpredictable. Here, we demonstrate a new method to control the protein crystal nucleation using a magnetic force, where we manipulate the movement and coalescence of nucleation precursors by adding paramagnetic salt into the crystallization solution to constrain the number and position of nucleation. We found that protein nucleation could be significantly affected by the magnetic force that the gradient magnetic fields generate. When the magnetization force is sufficiently enough, nucleation can be confined to the crystallization solution with no interface contact; therefore, only one crystal nucleus appears, which results in noncontact suspension growth of a single crystal in the crystallization solution system. Under these situations, the nucleation rate significantly decreases due to the coalescence of the dense liquid phase, and the crystal growth rate also decreases due to the suppression of convection, which increases the crystal quality. Our findings provide a new method for the noncontact control of crystal nucleation and demonstrate that externally applied physical environments can be used to affect the liquid-liquid phase separation process.
RESUMO
Although it is an effective treatment for acute myeloid leukemia (AML), chemotherapy leads to myelosuppression and poor hematopoietic reconstruction. Hematopoiesis is regulated by bone marrow (BM) endothelial cells (ECs), and BM ECs are dysfunctional in acute leukemia patients with poor hematopoietic reconstitution after allogenic hematopoietic stem cell transplantation. Thus, it is crucial to explore the underlying mechanism of EC impairment and establish strategies for targeted therapy. TGF-ß signaling was found to be upregulated in ECs from AML patients in complete remission (CR ECs) and led to CR EC damage. Administration of a TGF-ß inhibitor rescued the dysfunction of ECs caused by TGF-ß1 expression in vitro, especially their hematopoiesis-supporting ability. Moreover, inhibition of TGF-ß expression repaired the BM EC damage triggered by chemotherapy in both AML patients in vitro and in an AML-CR murine model, and restored normal hematopoiesis without promoting AML progression. Mechanistically, our data reveal alterations in the transcriptomic pattern of damaged BM ECs, accompanied by the overexpression of downstream molecules TGF-ßR1, pSmad2/3, and functional genes related to adhesion, angiogenesis suppression and pro-apoptosis. Collectively, our findings reveal for the first time that the activation of TGF-ß signaling leads to BM EC dysfunction and poor hematopoietic reconstitution. Targeting TGF-ß represents a potential therapeutic strategy to promote multilineage hematopoiesis, thereby benefiting more cancer patients who suffer from myelosuppression after chemotherapy.
RESUMO
The difluoromethyl group (CF2H) has received great attention due to its distinct properties in recent years. Herein, we report a new strategy for postmodification of difluoromethyl compounds. Ortho-selective C-H borylation of difluoromethyl arenes is achieved by a cyclometalated mesoionic carbene-Ir complex. The regioselectivity is controlled by a hydrogen bond between CF2H and the boryl group via the outer-sphere direction.
RESUMO
Aplastic anemia (AA) is a life-threatening disease characterized by bone marrow (BM) failure and pancytopenia. As an important component of the BM microenvironment, endothelial cells (ECs) play a crucial role in supporting hematopoiesis and regulating immunity. However, whether impaired BM ECs are involved in the occurrence of AA and whether repairing BM ECs could improve hematopoiesis and immune status in AA remain unknown. In this study, a classical AA mouse model and VE-cadherin blocking antibody that could antagonize the function of ECs were used to validate the role of BM ECs in the occurrence of AA. N-acetyl-L-cysteine (NAC, a reactive oxygen species scavenger) or exogenous EC infusion was administered to AA mice. Furthermore, the frequency and functions of BM ECs from AA patients and healthy donors were evaluated. BM ECs from AA patients were treated with NAC in vitro, and then the functions of BM ECs were evaluated. We found that BM ECs were significantly decreased and damaged in AA mice. Hematopoietic failure and immune imbalance became more severe when the function of BM ECs was antagonized, whereas NAC or EC infusion improved hematopoietic and immunological status by repairing BM ECs in AA mice. Consistently, BM ECs in AA patients were decreased and dysfunctional. Furthermore, dysfunctional BM ECs in AA patients led to their impaired ability to support hematopoiesis and dysregulate T cell differentiation toward proinflammatory phenotypes, which could be repaired by NAC in vitro. The reactive oxygen species pathway was activated, and hematopoiesis- and immune-related signaling pathways were enriched in BM ECs of AA patients. In conclusion, our data indicate that dysfunctional BM ECs with impaired hematopoiesis-supporting and immunomodulatory abilities are involved in the occurrence of AA, suggesting that repairing dysfunctional BM ECs may be a potential therapeutic approach for AA patients.
Assuntos
Anemia Aplástica , Humanos , Animais , Camundongos , Anemia Aplástica/terapia , Medula Óssea , Células Endoteliais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células da Medula Óssea/metabolismoRESUMO
The tumor recurrence and drug resistance of hepatocellular carcinoma (HCC) threatened patients a lot. The mechanism should be further explored. The information of expression status and survival were available in public databases. The Western blot and immunohistochemistry staining displayed the level of related proteins. CCK-8, colony-formation assays, transwell assay and wound healing assay were performed to illustrate the ability of tumor growth, invasion and migration. In vivo model was established to verify our cell experiments. In our study, we revealed that proteasome 26S subunit, non-ATPase 12 (PSMD12) was high expressed in HCC tissues and positive related to the survival. In vitro experiments suggested that PSMD12 knockdown attenuated tumor cell growth, invasion and migration. Moreover, PSMD12 interference blocked the activation of MEK-ERK pathway. The ERK inhibitor could alleviate the tumor-promoting effect in PSMD12-overexpression cells. In addition, kinesin family member 15 (KIF15) was also observed to be highly expressed in HCC and be harmful to the survival. The public database, the images of immunohistochemistry and the western blot illustrated that PSMD12 and KIF15 was positive correlated. KIF15 knockdown impaired tumor progression and tumor-promoting effect of PSMD12. The xenograft models supported the results of cell experiments. In conclusion, PSMD12 could activated MEK-ERK pathway via KIF15 upregulation, thereby promoting tumor progression.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Cinesinas/genética , Neoplasias Hepáticas/patologia , Sistema de Sinalização das MAP Quinases , Recidiva Local de Neoplasia , Complexo de Endopeptidases do Proteassoma/metabolismo , Sincalida/metabolismoRESUMO
Recent studies have shown that diabetes is a major risk factor for breast cancer (BC), but the mechanism is incompletely understood. Mesenteric estrogen-dependent adipogenesis (MEDAG) plays a significant role in both glucose uptake and BC development. However, the relationship between MEDAG and BC under high glucose (HG) conditions remains unclear. In our study, MEDAG expression was higher in BC tissue from diabetic patients than in BC tissue from nondiabetic patients. HG promoted BC progression in vitro and in vivo by upregulating MEDAG expression. Furthermore, MEDAG deficiency increased the autophagosome number and autophagic flux. Moreover, inhibition of autophagy partially reversed MEDAG knockdown (MEDAGKD)-induced suppression of tumorigenic biological behaviors and epithelial-mesenchymal transition (EMT) progression. Finally, MEDAG significantly suppressed AMPK phosphorylation. Additionally, the AMPK inhibitor Compound C markedly reduced autophagosome accumulation and antitumor effects in MEDAGKD cells. Treatment with the AMPK activator AICAR exhibited similar effects in MEDAG-overexpressing (MEDAGOE) cells. In conclusion, the MEDAG-AMPK-autophagy axis is vital to BC progression in diabetic patients. Our findings provide a novel treatment target for BC in patients with diabetes.
Assuntos
Neoplasias da Mama , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Feminino , Glucose/metabolismo , HumanosRESUMO
Ferritinophagy, a form of autophagy, is also an important part of ferroptosis, a type of regulated cell death resulting from abnormal iron metabolism involving the production of reactive oxygen species. As ferroptosis, autophagy and cancer have been revealed, ferritinophagy has attracted increasing attention in cancer development. In this review, we discuss the latest research progress on ferroptosis, autophagy-associated ferroptosis led by ferritinophagy, the regulators of ferritinophagy and promising cancer treatments that target ferritinophagy. Ferritinophagy is at the intersection of ferroptosis and autophagy and plays a significant role in cancer development. The discussed studies provide new insights into the mechanisms of ferritinophagy and promising related treatments for cancer.
RESUMO
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired hematopoietic stem cell genetic mutation disease that causes defective erythrocyte membrane hemolysis. Its pathologic basis is the mutation of the PIG-A gene, whose product is necessary for the synthesis of glycosylphosphatidylinositol (GPI) anchors; the mutation of PIG-A gene results in the reduction or deletion of the GPI anchor, which leads to the deficiency of GPI-anchored proteins (GPI-APs), such as CD55 and CD59, which are complement inhibitors. The deficiency of complement inhibitors causes chronic complement-mediated intravascular hemolysis of GPI-anchor-deficient erythrocyte. PIG-A gene mutation could also be found in bone marrow hematopoietic stem cells (HSCs) of healthy people, but they have no growth advantage; only the HSCs with PIG-A gene mutation in PNH patients have this advantage and expand. Besides, HSCs from PIG-A-knockout mice do not show clonal expansion in bone marrow, so PIG-A mutation cannot explain the clonal advantage of the PNH clone and some additional factors are needed; thus, in recent years, many scholars have put forward the theories of the second hit, and immune escape theory is one of them. In this paper, we focus on how T lymphocytes are involved in immune escape hypothesis in the pathogenesis of PNH.
Assuntos
Suscetibilidade a Doenças , Hemoglobinúria Paroxística/etiologia , Hemoglobinúria Paroxística/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Apoptose/genética , Autoimunidade , Biomarcadores , Medula Óssea/imunologia , Medula Óssea/metabolismo , Medula Óssea/patologia , Gerenciamento Clínico , Suscetibilidade a Doenças/imunologia , Predisposição Genética para Doença , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Hemoglobinúria Paroxística/diagnóstico , Hemoglobinúria Paroxística/terapia , Humanos , Proteínas de Membrana/genética , MutaçãoRESUMO
Mitophagy is an evolutionally conserved cellular process that eliminates dysfunctional and excess mitochondria, thereby facilitating mitochondrial quality control and metabolic recycling. In addition, mitophagy is essential for cellular homeostasis and tissue development, and mitophagic dysfunction is related to various pathologies including neurodegenerative diseases and cancer. Thus, accurate quantitative measurement of mitophagy is one of the hot topics in the field of mitochondrial research. Fluorescence microscopical technology, one of the most widely used technologies at present, can well explain the occurrence and activity of mitophagy. Here, we introduce in detail an experimental method for the immunofluorescence-based quantitativ determination of mitophagy, which not only servers the in-depth study of mitochondrial homeostasis regulation, but also allows for the analyzing mitochondrial autophagy pathologies such as aging, neurodegenerative diseases and cancer.
Assuntos
Mitocôndrias , Mitofagia , Autofagia , Fluorescência , HomeostaseRESUMO
Macroautophagy is an intracellular degradation system in which autophagosomes and autolysosomes degrade the contents they contain in order to realize cell homeostasis and organelle renewal. Measuring autophagy activity and autophagic flux is very important for studying the role of autophagy, but accurate measurement of autophagic flux is quite complicated. Here, we use the GFP-mRFP-LC3 tandem probe to evaluate the cell autophagic flux. GFP is more sensitive to acidic environment and can be degraded in autolysosome due to the acidic environment. On the contrary, mRFP can be stably present in autolysosome due to its better tolerance to PH reduction. Hence, autophagic flux can be evaluated by calculating the ratio of GFP/RFP signal values. In addition, using this probe, we can more accurately measure the basal autophagic flux and induced autophagic flux in cells or animals. Summarily, the GFP-mRFP-LC3 tandem probe is a simple quantitative method to evaluate autophagic flux of cells and even whole organism.
Assuntos
Autofagia , Proteínas Associadas aos Microtúbulos , Animais , Autofagossomos , Proteínas de Fluorescência Verde/genética , LisossomosRESUMO
In this paper, a refractive index (RI) sensor based on the twin-core photonic crystal fiber (TC-PCF) is presented. Introducing the rectangular array in the core area makes the PCF possible to obtain high birefringence and low confinement loss over the wavelength range from 0.6 µm to 1.7 µm. Therefore, the core region can enhance the interaction between the core mode and the filling material. We studied theoretically the evolution characteristics of the birefringence and operating wavelength corresponding to the strongest polarization point under the condition of filling the rectangular array with RI matching fluid range from 1.33 to 1.41. Simulation results reveal that the proposed TC-PCF has opposite evolutions of change rates between the B and wavelength, and the maximum RI sensing sensitivities of 1.809×10-2 B/RIU and 8 700 nm/RIU at low and high RI infill are obtained respectively, which means that the TC-PCF features of dual-parameter demodulation for the RI sensing can maintain a high refractive index sensing sensitivity within a large scope of RI ranging from 1.33 to 1.41. Compared with the results of single-parameter demodulation, it is an optimized method to improve the sensitivity of low refractive index sensors, which has great application potency in the field of biochemical sensing and detection.
RESUMO
Breast cancer (BC) is the most common malignancy among women. Mesenteric estrogen-dependent adipogenesis gene (MEDAG) was first reported as a novel adipogenic gene, and its involvement and mechanism in visceral adiposity were analyzed. However, the role of MEDAG in BC is unclear. The biological roles and corresponding mechanisms were investigated in vitro and in vivo. We found that MEDAG was highly expressed in BC samples and that a high MEDAG expression was correlated with clinicopathological characteristics and poor survival in BC patients. MEDAG knockdown inhibited cell proliferation, invasion, and migration; triggered epithelial-to-mesenchymal transition (EMT); and enhanced epirubicin sensitivity in vitro. The opposite results were observed in MEDAG-overexpressing cells. The inhibition of MEDAG suppressed tumor growth and metastasis in vivo. Mechanistically, MEDAG knockdown led to decreased phosphorylation levels of AKT, increased levels of p-AMPK, and reduced levels of p-mTOR, while the overexpression of MEDAG had the opposite effects. Moreover, the activation of p-AKT and inhibition of p-AMPK restored the effect of MEDAG on EMT and chemosensitivity in BC cell lines, indicating that MEDAG functions as an oncogene by regulating the AKT/AMPK/mTOR pathway. MEDAG regulates BC progression and EMT via the AKT/AMPK/mTOR pathway and reduces chemosensitivity in BC cells. Therefore, MEDAG is a promising target for BC.