Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cereb Cortex ; 33(6): 2507-2516, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35670595

RESUMO

When listening to speech, cortical activity can track mentally constructed linguistic units such as words, phrases, and sentences. Recent studies have also shown that the neural responses to mentally constructed linguistic units can predict the outcome of patients with disorders of consciousness (DoC). In healthy individuals, cortical tracking of linguistic units can be driven by both long-term linguistic knowledge and online learning of the transitional probability between syllables. Here, we investigated whether statistical learning could occur in patients in the minimally conscious state (MCS) and patients emerged from the MCS (EMCS) using electroencephalography (EEG). In Experiment 1, we presented to participants an isochronous sequence of syllables, which were composed of either 4 real disyllabic words or 4 reversed disyllabic words. An inter-trial phase coherence analysis revealed that the patient groups showed similar word tracking responses to real and reversed words. In Experiment 2, we presented trisyllabic artificial words that were defined by the transitional probability between words, and a significant word-rate EEG response was observed for MCS patients. These results suggested that statistical learning can occur with a minimal conscious level. The residual statistical learning ability in MCS patients could potentially be harnessed to induce neural plasticity.


Assuntos
Aprendizagem , Estado Vegetativo Persistente , Humanos , Aprendizagem/fisiologia , Eletroencefalografia/métodos , Idioma , Percepção Auditiva
2.
Sensors (Basel) ; 24(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38931811

RESUMO

The maximum detection distance is usually the primary concern of magnetic anomaly detection (MAD). Intuition tells us that larger object size, stronger magnetization and finer measurement resolution guarantee a further detectable distance. However, the quantitative relationship between detection distance and the above determinants is seldom studied. In this work, unmanned aerial vehicle-based MAD field experiments are conducted on cargo vessels and NdFeB magnets as typical magnetic objects to give a set of visualized magnetic field flux density images. Isometric finite element models are established, calibrated and analyzed according to the experiment configuration. A maximum detectable distance map as a function of target size and measurement resolution is then obtained from parametric sweeping on an experimentally calibrated finite element analysis model. We find that the logarithm of detectable distance is positively proportional to the logarithm of object size while negatively proportional to the logarithm of resolution, within the ranges of 1 m~500 m and 1 pT~1 µT, respectively. A three-parameter empirical formula (namely distance-size-resolution logarithmic relationship) is firstly developed to determine the most economic sensor configuration for a given detection task, to estimate the maximum detection distance for a given magnetic sensor and object, or to evaluate minimum detectable object size at a given magnetic anomaly detection scenario.

3.
Med Biol Eng Comput ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38514500

RESUMO

The extraction of effective classification features from electroencephalogram (EEG) signals in motor imagery is a popular research topic. The Common Spatial Pattern (CSP) algorithm is widely employed in this field. However, the performance of the traditional CSP method depends significantly on the choice of a specific frequency band and channel number of EEG data. Furthermore, inter-class variance among these frequency bands and the limited number of available EEG channels can adversely affect the CSP algorithm's ability to extract meaningful features from the relevant signal frequency bands. We hypothesize that multiple Intrinsic Mode Functions (IMFS), into which the raw EEG signal is decomposed, can better capture the non-Gaussian characteristics of the signal, thus compensating for the limitations of the CSP algorithm when dealing with nonlinear and non-Gaussian distributed data with few channels. Therefore, this paper proposes a novel method that integrates Variational Mode Decomposition (VMD), Phase Space Reconstruction (PSR), and the CSP algorithm to address these issues. VMD is used to filter and enhance the quality of the collected data, PSR is employed to increase the effective data channels (data augmentation), and the subsequent CSP filtering can obtain signals with spatial features, which are decoded by Convolutional Neural Networks (CNN) for action decoding. This study utilizes self-collected EEG data to demonstrate that the new method can achieve a good classification accuracy of 82.30% on average, confirming the improved algorithm's effectiveness and feasibility. Furthermore, this study conducted validation on the publicly available BCI Competition IV dataset 2b, demonstrating an average classification accuracy of 87.49%.

4.
Med Biol Eng Comput ; 61(12): 3303-3317, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37667074

RESUMO

Transcranial direct current stimulation (tDCS) is an emerging brain intervention technique that has gained growing attention in recent years in the rehabilitation area. In this paper, we investigated the efficacy of tDCS in the rehabilitation process of stroke patients, utilizing corticomuscular coupling (CMC) and brain functional network analysis. Specifically, we examined changes in CMC relationships between the treatment and control groups before and after rehabilitation by transfer entropy (TE), and constructed brain functional networks by TE. We further calculated features of the functional networks, including node degree, global efficiency, clustering coefficient, characteristic path length, and small world index. Our results demonstrate that CMC in patients increased significantly after treatment, with greater improvements in the tDCS group, particularly within the beta and gamma bands. In addition, the functional brain network analysis revealed enhanced connectivity between brain regions, improved information processing capacity, and increased transmission efficiency in patients as their condition improved. Notably, treatment with tDCS resulted in more significant improvements than the sham group, with a statistically significant difference observed after rehabilitation treatment (p < 0.05). These findings provide compelling evidence regarding the role of tDCS in the treatment of stroke and highlight the potential of this approach in stroke rehabilitation. The use of tDCS for therapeutic interventions in stroke rehabilitation can significantly improve the coupling of patients' functional brain networks. Also, using Transfer Entropy (TE) as a characteristic of CMC, tDCS was found to significantly enhance patients' TE, i.e. enhanced CMC.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Acidente Vascular Cerebral/terapia , Reabilitação do Acidente Vascular Cerebral/métodos , Encéfalo
5.
Math Biosci Eng ; 20(6): 10530-10551, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37322947

RESUMO

Changes in the functional connections between the cerebral cortex and muscles can evaluate motor function in stroke rehabilitation. To quantify changes in functional connections between the cerebral cortex and muscles, we combined corticomuscular coupling and graph theory to propose dynamic time warped (DTW) distances for electroencephalogram (EEG) and electromyography (EMG) signals as well as two new symmetry metrics. EEG and EMG data from 18 stroke patients and 16 healthy individuals, as well as Brunnstrom scores from stroke patients, were recorded in this paper. First, calculate DTW-EEG, DTW-EMG, BNDSI and CMCSI. Then, the random forest algorithm was used to calculate the feature importance of these biological indicators. Finally, based on the results of feature importance, different features were combined and validated for classification. The results showed that the feature importance was from high to low as CMCSI/BNDSI/DTW-EEG/DTW-EMG, while the feature combination with the highest accuracy was CMCSI+BNDSI+DTW-EEG. Compared to previous studies, combining the CMCSI+BNDSI+DTW-EEG features of EEG and EMG achieved better results in the prediction of motor function rehabilitation at different levels of stroke. Our work implies that the establishment of a symmetry index based on graph theory and cortical muscle coupling has great potential in predicting stroke recovery and promises to have an impact on clinical research applications.


Assuntos
Músculo Esquelético , Acidente Vascular Cerebral , Humanos , Eletromiografia/métodos , Movimento , Eletroencefalografia , Biomarcadores
6.
IEEE/ACM Trans Comput Biol Bioinform ; 19(6): 3539-3552, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34506290

RESUMO

Phylogenetic trees are unable to represent the evolutionary process for a collection of species if reticulation events happened, and a generalized model named phylogenetic network was introduced consequently. However, the representation of the evolutionary process for one gene is actually a phylogenetic tree that is "contained" in the phylogenetic network for the considered species containing the gene. Thus a fundamental computational problem named Tree Containment problem arises, which asks whether a phylogenetic tree is contained in a phylogenetic network. The previous research on the problem mainly focused on its rooted version of which the considered tree and network are rooted, and several algorithms were proposed when the considered network is binary or structure-restricted. There is almost no algorithm for its unrooted version except the recent fixed-parameter algorithm with runtime O(4kn2), where k and n are the reticulation number and size of the considered unrooted binary phylogenetic network N, respectively. As the runtime is a little expensive when considering big values of k, we aim to improve it and successfully propose a fixed-parameter algorithm with runtime O(2.594kn2) in the paper. Additionally, we experimentally show its effectiveness on biological data and simulated data.


Assuntos
Evolução Biológica , Modelos Genéticos , Filogenia , Algoritmos
7.
Brain Sci ; 12(12)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36552139

RESUMO

Major depressive disorder (MDD) is a common mental illness. This study used electroencephalography (EEG) to explore the effects of music therapy on brain networks in MDD patients and to elucidate changes in functional brain connectivity in subjects before and after musical stimulation. EEG signals were collected from eight MDD patients and eight healthy controls. The phase locking value was adopted to calculate the EEG correlation of different channels in different frequency bands. Correlation matrices and network topologies were studied to analyze changes in functional connectivity between brain regions. The results of the experimental analysis found that the connectivity of the delta and beta bands decreased, while the connectivity of the alpha band increased. Regarding the characteristics of the EEG functional network, the average clustering coefficient, characteristic path length and degree of each node in the delta band decreased significantly after musical stimulation, while the characteristic path length in the beta band increased significantly. Characterized by the average clustering coefficient and characteristic path length, the classification of depression and healthy controls reached 93.75% using a support vector machine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA