RESUMO
The characteristic distribution patterns of hydrocarbons have been used for fingerprinting to identify their sources. The historical air depositions of hydrocarbons recorded in natural media help to understand the evolution of the air environment. Travertine is a natural acceptor of air deposition that settles on the ground layer by layer. To reconstruct the historical air environment of hydrocarbons in the North Tibetan Plateau (NTP), a unique background region, twenty-seven travertine samples were collected systematically from a travertine column according to its precipitated year. For each sample, the precipitated year was dated while n-alkanes and polycyclic aromatic hydrocarbons (PAHs) were determined. Based on source identification, the air environment of hydrocarbons in the past century was studied for the region of NTP. Before World War II, the anthropogenic sources of hydrocarbons showed little influence on the air environment. During World War II and China's War of Liberation, hydrocarbons increased significantly, mainly from the use of fossil fuels. Between 1954 and 1963, hydrocarbons in the air decreased significantly because the sources of petroleum combustion decreased. From the mid-1960s through the end of the 1990s, air hydrocarbons, which mainly originated from biomass burning, increased gradually because agriculture and animal husbandry were developing steadily in Tibet and China. From the late 1990s, hydrocarbons in the atmosphere increased rapidly due to the rapid increase of tourism activities, which might increase hydrocarbon emissions from traffic. The reconstruction of the historical air hydrocarbons in NTP clearly reflects the evolution of the region and global development.
Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Atmosfera/química , China , Material Particulado/análise , TibetRESUMO
Forty-two congeners of polybrominated diphenyl ethers (PBDEs) were detected for each of 27 surface-soil samples collected at an area near the Changwengluozha Glacier in the Central Tibetan Plateau (CTP), a remote background area at altitude from 5080 to 5217 m. The total concentrations of BDEs in soils ranged from 15.3 to 248.0 ng/kg, which were found to be positively correlated with the clay contents in the soil. In addition to adsorption, the clay was found to serve as a catalyst for the debromination of PBDEs in soils. Three pieces of evidence confirmed that the clay was significantly correlated with the debrominating transformation from the higher brominated congeners to the less brominated congeners. The transforming rate was found to be increased 3.5% with a 10% increase in clays. Debromination is an important way for highly brominated congeners to transform into lighter brominated congeners that are more toxic. This study first provided the direct field evidences for clays contributing to the debromination of PBDEs, and elucidated the importance of it in PBDEs' environmental fate.
Assuntos
Monitoramento Ambiental , Éteres Difenil Halogenados/análise , Poluentes do Solo/análise , Solo/química , Camada de Gelo , TibetRESUMO
Forty-four soil samples were collected across the central Tibetan Plateau (CTP) at altitudes between 3711 m and 5352 m, and their polycyclic aromatic hydrocarbons (PAHs) contents were measured to be from 0.43 to 26.66 ng/g. The main sources of PAHs were identified for each of four sub-areas, and their concentrations in soils were determined to be mainly influenced by local sources. Along a 600 km sampling trajectory from Lhasa, which served as the biggest local source, the concentrations of PAHs decreased logarithmically with increasing distances from the source. Meanwhile, the fractional proportions of PAHs were observed to change logarithmically according to the transport distances. Conclusively, PAHs from local sources were transported within the CTP and dominated PAHs concentrations in the soils, but few of them were transported outside the CTP. In global cycling, the soils in the CTP mainly serve as background and a "sink" for PAHs.
Assuntos
Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise , Altitude , China , Monitoramento Ambiental , TibetRESUMO
BACKGROUND: The efficacies of current treatments for invasive aspergillus (IA) are unsatisfactory and new therapeutic targets or regimens to treat IA are urgently needed. Previous studies have indicated that the ability of conidia to invade host cells is critical in IA development and fibronectin has a hand in the conidia adherence process. In the clinical setting, many patients who receive glucocorticoid for extended periods are susceptible to Aspergillus fumigatus (A. fumigatus) infection, for this reason we investigated the effect of glucocorticoid on conidia invasiveness by comparing the invasiveness of A. fumigatus conidia in the type II human alveolar cell line (A549) cultured with different concentrations of dexamethasone. We also explored the relationships between dexamethasone and fibronectin expression. METHODS: Following culture with anti-fibronectin antibodies and/or dexamethasone, type II human alveolar A549 cells were infected with conidia of A. fumigatus. After 4 hours, the extracellular free conidia were washed away and the remaining immobilized conidia were released using Triton-X 100 and quantified by counting the colony-forming units. The invasiveness of conidia was measured by calculating the invasion rate (%). The transcription of the fibronectin gene in cells cultured with different concentrations of dexamethasone for 24 hours was tested by fluorogenic quantitative RT-PCR while the expression of fibronectinin cells cultured for 48 hours was tested by Western blotting and immunocytochemistry. RESULTS: A significant reduction in the invasiveness of conidia was seen in the cells cultured with anti-fibronectin antibody ((14.42 ± 1.68)% vs. (19.17 ± 2.53)%, P < 0.05), but no significant difference was observed in cells cultured with a combination of anti-fibronectin antibody and dexamethasone (6.37 ± 10(-5) mol/L). There was no correlation between the dexamethasone concentration and the invasiveness of conidia after dexamethasone pretreatment of cells for 4 hours. In contrast, after pretreated for 24 hours, the invasiveness of conidia in the presence of 6.37×10(-5) mol/L dexamethasone ((24.66 ± 2.41)%) was higher than for the control ((19.17 ± 2.53)%) and the 0.25×10(-5) mol/L group ((19.93 ± 3.06)%), and the invasiveness in the 1.27×10(-5) mol/L group ((22.47 ± 2.46)%) was also higher than in the control, P < 0.05. The relative transcripts of the fibronectin gene after exposure to 6.37×10(-5) mol/L dexamethasone (9.19×10(-3)±1.2×10(-3)) was higher than for the control (4.61×10(-3)± 1.54×10(-3)) and the 0.25×10(-5) mol/L group (6.20×10(-3)± 1.93×10(-3)), and expression in the 1.27×10(-5) mol/L group (7.94×10(-3)± 2.24×10(-3)) was also higher than for the control, P < 0.05. High concentrations of dexamethasone promoted fibronectin production after culture for 48 hours. CONCLUSIONS: Dexamethasone can increase invasiveness of A. fumigatus conidia by promoting fibronectin expression. This may partially explain why patients who are given large doses of glucocorticoids for extended periods are more susceptible to A. fumigatus infection.
Assuntos
Aspergillus fumigatus/patogenicidade , Dexametasona/farmacologia , Fibronectinas/metabolismo , Linhagem Celular Tumoral , Fibronectinas/genética , Expressão Gênica/efeitos dos fármacos , HumanosRESUMO
The mitochondrion is essential for energy metabolism and production of reactive oxygen species (ROS). In intact cells, respiratory mitochondria exhibit spontaneous "superoxide flashes", the quantal ROS-producing events consequential to transient mitochondrial permeability transition (tMPT). Here we perform the first in vivo imaging of mitochondrial superoxide flashes and tMPT activity in living mice expressing the superoxide biosensor mt-cpYFP, and demonstrate their coupling to whole-body glucose metabolism. Robust tMPT/superoxide flash activity occurred in skeletal muscle and sciatic nerve of anesthetized transgenic mice. In skeletal muscle, imaging tMPT/superoxide flashes revealed labyrinthine three-dimensional networks of mitochondria that operate synchronously. The tMPT/superoxide flash activity surged in response to systemic glucose challenge or insulin stimulation, in an apparently frequency-modulated manner and involving also a shift in the gating mode of tMPT. Thus, in vivo imaging of tMPT-dependent mitochondrial ROS signals and the discovery of the metabolism-tMPT-superoxide flash coupling mark important technological and conceptual advances for the study of mitochondrial function and ROS signaling in health and disease.
Assuntos
Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Superóxidos/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Metabolismo Energético , Glucose/metabolismo , Insulina/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Poro de Transição de Permeabilidade Mitocondrial , Músculo Esquelético/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de SinaisRESUMO
By using venting method incubation experiment, we studied the ammonia volatilization and kinetics characteristics of uncoated slowed release compound fertilizer (SRF) under different soil water conditions and the growth and nitrogen utilization efficiency of rice in pot experiment. Results indicated that the ammonia volatilization of SRF under waterflooding reached the peak ahead of 3-4 days compared to the moist treatment. The peak and accumulation of ammonia volatilization in the waterflooding treatments were higher than those under the moist condition. SRF could significantly reduce total ammonia volatilization compared to the common compound fertilizer (CCF), reduced by 50.6% and 22.8% in the moist treatment and reduced by 24.2% and 10.4% in the waterflooding treatment,but the loss of ammonia volatilization of SRF was higher significantly than that of the coated fertilizer (CRF). Ammonia volatilization increased with the increasing of fertilizer application. The dynamics of ammonia volatilization of SRF could be quantitatively described with three equations: the first order kinetics equation, Elovich equation and parabola equation. Compared to moist condition, the biomass of rice plant in SRF, CCF and SRF treatments increased by 67.86%, 78.25% and 48.75%, and nitrogen utilization efficiency increased by 57.73%, 80.70% and 12.06% under waterflooding condition, respectively. Comparing with CCF, nitrogen utilization efficiency in SRF treatment improved by 59.10% and 10.40% under two soil moisture conditions. SRF could reduce ammonia volatilization and improve biomass and nitrogen utilization efficiency.