Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
ACS Nano ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39102459

RESUMO

Recent years have witnessed the explosive development of highly sensitive smart sensors based on conductive polymer foam materials. However, the design and development of multifunctional polymeric foam composites as smart sensors applied in complex solvent and oil environments remain a critical challenge. Herein, we design and synthesize vinyl-terminated polytrifluoropropylmethylsiloxane through anionic ring-opening polymerization to fabricate fluorosilicone rubber foam (FSiRF) materials with nanoscale wrinkled surfaces and reactive Si-H groups via a green and rapid chemical foaming strategy. Based on the strong adhesion between FSiRF materials and consecutive oxidized ketjen black (OKB) nano-network, multifunctional FSiRF nanocomposites were prepared by a dip-coating strategy followed by fluoroalkylsilane modification. The optimized F-OKB@FSiRF nanocomposites exhibit outstanding mechanical flexibility in wide-temperature range (100 cycle compressions from -20 to 200 °C), structure stability (no detached particles after being immersed into various aqueous solutions for up to 15 days), surface superhydrophobicity (water contact angle of 154° and sliding angle of ∼7°), and tunable electrical conductivity (from 10-5 to 10-2 S m-1). Additionally, benefiting from the combined actions of multiple lines of defense (low surface energy groups, physical barriers, and "shielding effect"), the F-OKB@FSiRF sensor presents excellent anti-swelling property and high sensitivity in monitoring both large-deformation and tiny vibrations generated by knocking the beaker, ultrasonic action, agitating, and sinking objects in weak-polar or nonpolar solvents. This work conceivably provides a chemical strategy for the fabrication of multifunctional polymeric foam nanocomposite materials as smart sensors for broad applications.

2.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 27(5): 489-92, 2010 Oct.
Artigo em Zh | MEDLINE | ID: mdl-20931522

RESUMO

OBJECTIVE: To investigate the transforming growth factor beta induced (TGFBI; BIGH3) gene mutation and founder effect of two large Chinese families clinically diagnosed as Thiel-Behnke corneal dystrophy. METHODS: Fifteen members including 13 affected and 2 healthy in family A, 14 members including 6 affected and 8 healthy in family B, as well as 20 other unrelated healthy individuals were tested for TGFBI gene mutation. Haplotype analysis and clinical examination were also carried out in the two families. RESULTS: In exon 12 of the TGFBI gene, 1664G to A change was detected in all the patients, which leads to an amino acid replacement of arginine with glutamine (p.Arg555Gln). Members of the two families share some similar haplotypes. CONCLUSION: Genetic analysis is helpful in the diagnosis of corneal dystrophy. The two families may come from a same ancestor.


Assuntos
Proteínas da Matriz Extracelular/genética , Efeito Fundador , Fator de Crescimento Transformador beta/genética , Adolescente , Adulto , Idoso , Povo Asiático/genética , Sequência de Bases , Criança , Distrofias Hereditárias da Córnea/diagnóstico , Distrofias Hereditárias da Córnea/genética , Éxons , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Linhagem , Mutação Puntual , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA