RESUMO
Clonal hematopoiesis of indeterminate potential (CHIP) arises from aging-associated acquired mutations in hematopoietic progenitors, which display clonal expansion and produce phenotypically altered leukocytes. We associated CHIP-DNMT3A mutations with a higher prevalence of periodontitis and gingival inflammation among 4,946 community-dwelling adults. To model DNMT3A-driven CHIP, we used mice with the heterozygous loss-of-function mutation R878H, equivalent to the human hotspot mutation R882H. Partial transplantation with Dnmt3aR878H/+ bone marrow (BM) cells resulted in clonal expansion of mutant cells into both myeloid and lymphoid lineages and an elevated abundance of osteoclast precursors in the BM and osteoclastogenic macrophages in the periphery. DNMT3A-driven clonal hematopoiesis in recipient mice promoted naturally occurring periodontitis and aggravated experimentally induced periodontitis and arthritis, associated with enhanced osteoclastogenesis, IL-17-dependent inflammation and neutrophil responses, and impaired regulatory T cell immunosuppressive activity. DNMT3A-driven clonal hematopoiesis and, subsequently, periodontitis were suppressed by rapamycin treatment. DNMT3A-driven CHIP represents a treatable state of maladaptive hematopoiesis promoting inflammatory bone loss.
Assuntos
Hematopoiese Clonal , DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3A , Periodontite , Animais , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Camundongos , Hematopoiese Clonal/genética , Humanos , Periodontite/genética , Periodontite/patologia , Mutação , Masculino , Feminino , Inflamação/genética , Inflamação/patologia , Osteoclastos/metabolismo , Camundongos Endogâmicos C57BL , Adulto , Interleucina-17/metabolismo , Interleucina-17/genética , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Hematopoese/genética , Osteogênese/genética , Células-Tronco Hematopoéticas/metabolismo , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Pessoa de Meia-IdadeRESUMO
Bone marrow (BM)-mediated trained innate immunity (TII) is a state of heightened immune responsiveness of hematopoietic stem and progenitor cells (HSPC) and their myeloid progeny. We show here that maladaptive BM-mediated TII underlies inflammatory comorbidities, as exemplified by the periodontitis-arthritis axis. Experimental-periodontitis-related systemic inflammation in mice induced epigenetic rewiring of HSPC and led to sustained enhancement of production of myeloid cells with increased inflammatory preparedness. The periodontitis-induced trained phenotype was transmissible by BM transplantation to naive recipients, which exhibited increased inflammatory responsiveness and disease severity when subjected to inflammatory arthritis. IL-1 signaling in HSPC was essential for their maladaptive training by periodontitis. Therefore, maladaptive innate immune training of myelopoiesis underlies inflammatory comorbidities and may be pharmacologically targeted to treat them via a holistic approach.
Assuntos
Artrite , Periodontite , Animais , Células-Tronco Hematopoéticas , Imunidade Inata , Camundongos , MielopoeseRESUMO
Cancer therapies kill tumors either directly or indirectly by evoking immune responses and have been combined with varying levels of success. Here, we describe a paradigm to control cancer growth that is based on both direct tumor killing and the triggering of protective immunity. Genetic ablation of serine protease inhibitor SerpinB9 (Sb9) results in the death of tumor cells in a granzyme B (GrB)-dependent manner. Sb9-deficient mice exhibited protective T cell-based host immunity to tumors in association with a decline in GrB-expressing immunosuppressive cells within the tumor microenvironment (TME). Maximal protection against tumor development was observed when the tumor and host were deficient in Sb9. The therapeutic utility of Sb9 inhibition was demonstrated by the control of tumor growth, resulting in increased survival times in mice. Our studies describe a molecular target that permits a combination of tumor ablation, interference within the TME, and immunotherapy in one potential modality.
Assuntos
Citotoxicidade Imunológica , Imunoterapia , Proteínas de Membrana/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Serpinas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citotoxicidade Imunológica/efeitos dos fármacos , Progressão da Doença , Feminino , Deleção de Genes , Granzimas/metabolismo , Imunidade/efeitos dos fármacos , Melanoma/patologia , Camundongos Endogâmicos C57BL , Neoplasias/prevenção & controle , Bibliotecas de Moléculas Pequenas/farmacologia , Células Estromais/efeitos dos fármacos , Células Estromais/patologia , Microambiente Tumoral/efeitos dos fármacosRESUMO
Trained innate immunity, induced via modulation of mature myeloid cells or their bone marrow progenitors, mediates sustained increased responsiveness to secondary challenges. Here, we investigated whether anti-tumor immunity can be enhanced through induction of trained immunity. Pre-treatment of mice with ß-glucan, a fungal-derived prototypical agonist of trained immunity, resulted in diminished tumor growth. The anti-tumor effect of ß-glucan-induced trained immunity was associated with transcriptomic and epigenetic rewiring of granulopoiesis and neutrophil reprogramming toward an anti-tumor phenotype; this process required type I interferon signaling irrespective of adaptive immunity in the host. Adoptive transfer of neutrophils from ß-glucan-trained mice to naive recipients suppressed tumor growth in the latter in a ROS-dependent manner. Moreover, the anti-tumor effect of ß-glucan-induced trained granulopoiesis was transmissible by bone marrow transplantation to recipient naive mice. Our findings identify a novel and therapeutically relevant anti-tumor facet of trained immunity involving appropriate rewiring of granulopoiesis.
Assuntos
Granulócitos/imunologia , Imunidade Inata , Neoplasias/imunologia , Imunidade Adaptativa , Transferência Adotiva , Animais , Epigênese Genética , Interferon Tipo I/metabolismo , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Neoplasias/patologia , Neutrófilos/metabolismo , Fenótipo , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/metabolismo , Transcrição Gênica , Transcriptoma/genética , beta-Glucanas/metabolismoRESUMO
Resolution of inflammation is essential for tissue homeostasis and represents a promising approach to inflammatory disorders. Here we found that developmental endothelial locus-1 (DEL-1), a secreted protein that inhibits leukocyte-endothelial adhesion and inflammation initiation, also functions as a non-redundant downstream effector in inflammation clearance. In human and mouse periodontitis, waning of inflammation was correlated with DEL-1 upregulation, whereas resolution of experimental periodontitis failed in DEL-1 deficiency. This concept was mechanistically substantiated in acute monosodium-urate-crystal-induced inflammation, where the pro-resolution function of DEL-1 was attributed to effective apoptotic neutrophil clearance (efferocytosis). DEL-1-mediated efferocytosis induced liver X receptor-dependent macrophage reprogramming to a pro-resolving phenotype and was required for optimal production of at least certain specific pro-resolving mediators. Experiments in transgenic mice with cell-specific overexpression of DEL-1 linked its anti-leukocyte-recruitment action to endothelial cell-derived DEL-1 and its efferocytic/pro-resolving action to macrophage-derived DEL-1. Thus, the compartmentalized expression of DEL-1 facilitates distinct homeostatic functions in an appropriate context that can be harnessed therapeutically.
Assuntos
Proteínas de Transporte/metabolismo , Inflamação/imunologia , Macrófagos/fisiologia , Neutrófilos/imunologia , Periodontite/imunologia , Adulto , Animais , Proteínas de Ligação ao Cálcio , Proteínas de Transporte/genética , Moléculas de Adesão Celular , Reprogramação Celular , Citocinas/metabolismo , Regulação da Expressão Gênica , Humanos , Inflamação/induzido quimicamente , Peptídeos e Proteínas de Sinalização Intercelular , Células K562 , Receptores X do Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , FagocitoseRESUMO
The human brain develops through a tightly organized cascade of patterning events, induced by transcription factor expression and changes in chromatin accessibility. Although gene expression across the developing brain has been described at single-cell resolution1, similar atlases of chromatin accessibility have been primarily focused on the forebrain2-4. Here we describe chromatin accessibility and paired gene expression across the entire developing human brain during the first trimester (6-13 weeks after conception). We defined 135 clusters and used multiomic measurements to link candidate cis-regulatory elements to gene expression. The number of accessible regions increased both with age and along neuronal differentiation. Using a convolutional neural network, we identified putative functional transcription factor-binding sites in enhancers characterizing neuronal subtypes. We applied this model to cis-regulatory elements linked to ESRRB to elucidate its activation mechanism in the Purkinje cell lineage. Finally, by linking disease-associated single nucleotide polymorphisms to cis-regulatory elements, we validated putative pathogenic mechanisms in several diseases and identified midbrain-derived GABAergic neurons as being the most vulnerable to major depressive disorder-related mutations. Our findings provide a more detailed view of key gene regulatory mechanisms underlying the emergence of brain cell types during the first trimester and a comprehensive reference for future studies related to human neurodevelopment.
RESUMO
The cardiomyocyte phenotypic switch from a proliferative to terminally differentiated state results in the loss of regenerative potential of the mammalian heart shortly after birth. Nonmuscle myosin IIB (NM IIB)-mediated actomyosin contractility regulates cardiomyocyte cytokinesis in the embryonic heart, and NM IIB levels decline after birth, suggesting a role for cellular tension in the regulation of cardiomyocyte cell cycle activity in the postnatal heart. To investigate the role of actomyosin contractility in cardiomyocyte cell cycle arrest, we conditionally activated ROCK2 kinase domain (ROCK2:ER) in the murine postnatal heart. Here, we show that α5/ß1 integrin and fibronectin matrix increase in response to actomyosin-mediated tension. Moreover, activation of ROCK2:ER promotes nuclear translocation of Yap, a mechanosensitive transcriptional co-activator, and enhances cardiomyocyte proliferation. Finally, we show that reduction of myocardial α5 integrin rescues the myocardial proliferation phenotype in ROCK2:ER hearts. These data demonstrate that cardiomyocytes respond to increased intracellular tension by altering their intercellular contacts in favor of cell-matrix interactions, leading to Yap nuclear translocation, thus uncovering a function for nonmuscle myosin contractility in promoting cardiomyocyte proliferation in the postnatal heart.
Assuntos
Actomiosina , Integrina alfa5 , Animais , Camundongos , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Proliferação de Células , Integrina alfa5/metabolismo , Mamíferos/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Autism Spectrum Disorders (ASD) comprise a range of early age-onset neurodevelopment disorders with genetic heterogeneity. Most ASD related genes are involved in synaptic function, which is regulated by mature brain-derived neurotrophic factor (mBDNF) and its precursor proBDNF in a diametrically opposite manner: proBDNF inhibits while mBDNF potentiates synapses. Here we generated a knock-in mouse line (BDNFmet/leu) in which the conversion of proBDNF to mBDNF is attenuated. Biochemical experiments revealed residual mBDNF but excessive proBDNF in the brain. Similar to other ASD mouse models, the BDNFmet/leu mice showed reduced dendritic arborization, altered spines, and impaired synaptic transmission and plasticity in the hippocampus. They also exhibited ASD-like phenotypes, including stereotypical behaviors and deficits in social interaction. Moreover, the plasma proBDNF/mBDNF ratio was significantly increased in ASD patients compared to normal children in a case-control study. Thus, deficits in proBDNF to mBDNF conversion in the brain may contribute to ASD-like behaviors, and plasma proBDNF/mBDNF ratio may be a potential biomarker for ASD.
RESUMO
A minimized version of complement factor H (FH), designated mini-FH, was previously engineered combining the N-terminal regulatory domains (short consensus repeat [SCR]1-4) and C-terminal host-surface recognition domains (SCR19-20) of the parent molecule. Mini-FH conferred enhanced protection, as compared with FH, in an ex vivo model of paroxysmal nocturnal hemoglobinuria driven by alternative pathway dysregulation. In the current study, we tested whether and how mini-FH could block another complement-mediated disease, namely periodontitis. In a mouse model of ligature-induced periodontitis (LIP), mini-FH inhibited periodontal inflammation and bone loss in wild-type mice. Although LIP-subjected C3-deficient mice are protected relative to wild-type littermates and exhibit only modest bone loss, mini-FH strikingly inhibited bone loss even in C3-deficient mice. However, mini-FH failed to inhibit ligature-induced bone loss in mice doubly deficient in C3 and CD11b. These findings indicate that mini-FH can inhibit experimental periodontitis even in a manner that is independent of its complement regulatory activity and is mediated by complement receptor 3 (CD11b/CD18). Consistent with this notion, a complement receptor 3-interacting recombinant FH segment that lacks complement regulatory activity (specifically encompassing SCRs 19 and 20; FH19-20) was also able to suppress bone loss in LIP-subjected C3-deficient mice. In conclusion, mini-FH appears to be a promising candidate therapeutic for periodontitis by virtue of its ability to suppress bone loss via mechanisms that both include and go beyond its complement regulatory activity.
Assuntos
Fator H do Complemento , Periodontite , Camundongos , Animais , Fator H do Complemento/metabolismo , Via Alternativa do Complemento , Proteínas do Sistema Complemento , Receptores de ComplementoRESUMO
BACKGROUND: Inhalable biologics represent a promising approach to improve the efficacy and safety of asthma treatment. Although several mAbs targeting IL-4 receptor α chain (IL-4Rα) have been approved or are undergoing clinical trials, the development of inhalable mAbs targeting IL-4Rα presents significant challenges. OBJECTIVE: Capitalizing on the distinctive advantages of nanobodies (Nbs) in maintaining efficacy during storage and administration, we sought to develop a novel inhalable IL-4Rα Nb for effectively treating asthma. METHODS: Three IL-4Rα immunized Nb libraries were used to generate specific and functional IL-4Rα Nbs. LQ036, a bivalent Nb comprising 2 HuNb103 units, was constructed with a high affinity and specificity for human IL-4Rα. The efficacy, pharmacokinetics, and safety of inhaled LQ036 were evaluated in B-hIL4/hIL4RA humanized mice. RESULTS: LQ036 inhibited secreted embryonic alkaline phosphatase reporter activity, inhibited TF-1 cell proliferation, and suppressed phosphorylated signal transducer and activator of transduction 6 in T cells from patients with asthma. Crystal structure analysis revealed a binding region similar to dupilumab but with higher affinity, leading to better efficacy in blocking the signaling pathway. HuNb103 competed with IL-4 and IL-13 for IL-4Rα binding. Additionally, LQ036 significantly inhibited ovalbumin-specific IgE levels in serum, CCL17 levels in bronchoalveolar lavage fluid, bronchial mucous cell hyperplasia, and airway goblet cell hyperplasia in B-hIL4/hIL4RA humanized mice. Inhaled LQ036 exhibited favorable pharmacokinetics, safety, and tissue distribution, with higher concentrations observed in the lungs and bronchi. CONCLUSIONS: These findings from preclinical studies establish the safety and efficacy of inhaled LQ036, underscoring its potential as a pioneering inhalable biologic therapy for asthma.
Assuntos
Asma , Anticorpos de Domínio Único , Asma/tratamento farmacológico , Asma/imunologia , Asma/terapia , Animais , Humanos , Anticorpos de Domínio Único/administração & dosagem , Anticorpos de Domínio Único/imunologia , Camundongos , Subunidade alfa de Receptor de Interleucina-4/imunologia , Subunidade alfa de Receptor de Interleucina-4/antagonistas & inibidores , Administração por Inalação , Feminino , Antiasmáticos/administração & dosagem , Antiasmáticos/farmacocinética , Antiasmáticos/uso terapêuticoRESUMO
Osteoarthritis (OA) is a degenerative joint disease characterized by obscure etiology and unsatisfactory therapeutic outcomes, making the development of new efficient therapies urgent. Superfluous reactive oxygen species (ROS) have historically been considered one of the crucial factors inducing the pathological progression of OA. Ultrasmall Prussian blue nanoparticles (USPBNPs), approximately sub-5 nm in size, are developed by regulating the configuration of polyvinylpyrrolidone chains. USPBNPs display an excellent ROS eliminating capacity and catalase-like activity, capable of decomposing hydrogen peroxide (H2O2) into O2. The anti-inflammatory mechanism of USPBNPs can be attributed to repolarizing macrophages from pro-inflammatory M1 to anti-inflammatory M2 phenotype by decreasing the ROS levels accompanied by O2 improvement. Additionally, USPBNPs exhibit an exciting therapeutic efficiency against OA, comparable to that of hydrocortisone in vivo. This study not only develops a new therapeutic agent for OA but also offers an estimable insight into the application of the nanozyme.
Assuntos
Ferrocianetos , Macrófagos , Osteoartrite , Espécies Reativas de Oxigênio , Ferrocianetos/química , Ferrocianetos/farmacologia , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Osteoartrite/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Nanopartículas/química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Humanos , Células RAW 264.7 , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Fenótipo , Tamanho da PartículaRESUMO
Organic-inorganic hybrid linear and nonlinear optical (NLO) materials have received increasingly wide spread attention in recent years. Herein, the first hybrid noncentrosymmetric (NCS) borophosphate, (C5H6N)2B2O(HPO4)2 (4PBP), is rationally designed and synthesized by a covalent-linkage strategy. 4-pyridyl-boronic acid (4 PB) is considered as a bifunctional unit, which may effectively improve the optical properties and stability of the resultant material. On the one hand, 4 PB units are covalently linked with PO3(OH) groups via strong B-O-P connections, which significantly enhances the thermal stability of 4PBP (decomposition at 321, vs lower 200 °C of most of hybrid materials). On the other hand, the planar π-conjugated C5H6N units and their uniform layered arrangements represent large structural anisotropy and hyperpolarizability, achieving the largest birefringence (0.156 @ 546 nm) in the reported borophosphates and a second-harmonic generation response (0.7 × KDP). 4PBP also exhibits a wide transparency range (0.27-1.50 µm). This work not only provides a promising birefringent material, but also offers a practical covalent-attachment strategy for the rational design of new high-performance optical materials.
RESUMO
Large mammalian herbivores (LMH) are important functional components and drivers of biodiversity and ecosystem functioning in grasslands. Yet their role in regulating food-web dynamics and trophic cascades remains poorly understood. In the temperate grasslands of northern China, we explored whether and how grazing domestic cattle (Bos taurus) alter the predator-prey interactions between a dominant grasshopper (Euchorthippus unicolor) and its avian predator the barn swallow (Hirundo rustica). Using two large manipulative field experiments, we found that in the presence of cattle, grasshoppers increased their jumping frequency threefold, swallows increased foraging visits to these fields sixfold, and grasshopper density was reduced by about 50%. By manipulatively controlling the grasshoppers' ability to jump, we showed that jumping enables grasshoppers to avoid being incidentally consumed or trampled by cattle. However, jumping behaviour increased their consumption rates by swallows 37-fold compared with grasshoppers that were unable to jump. Our findings illustrate how LMH can indirectly alter predator-prey interactions by affecting behaviour of avian predators and herbivorous insects. These non-plant-mediated effects of LMH may influence trophic interactions in other grazing ecosystems and shape community structure and dynamics. We highlight that convoluted multispecies interactions may better explain how LMH control food-web dynamics in grasslands.
Assuntos
Cadeia Alimentar , Gafanhotos , Herbivoria , Comportamento Predatório , Animais , Gafanhotos/fisiologia , China , Bovinos/fisiologia , Andorinhas/fisiologia , PradariaRESUMO
Cas9 protein-mediated gene editing has revolutionized genetic manipulation in most organisms. There are many cases where multiplexed gene editing is needed. Cas9 is capable of multiplex gene editing when expressed with multiple guide RNAs. Conventional cloning methods for multiplexed gene editing vector is not efficient due to repeated use of a single-guide RNA scaffold and inefficient ligation. In this study, we conducted structure-guided mutagenesis and random mutagenesis on the original sgRNA scaffold and identified a large number of functional sgRNA scaffold variants. With these scaffold variants and different tRNAs, fusion polymerase chain reaction protocol was developed to rapidly synthesize spacer-scaffold-tRNA-spacer units with up to 9 targets. In conjunction with golden gate cloning, gene editing vectors with up to 24 target sites were efficiently cloned in one-step cloning. One such gene editing vector targeting 12 genes in tomato were tested in stable transformation and 10 out of the 12 genes were found mutated in a single transgenic line. To facilitate the application of multiplexed gene editing using these scaffold variants and tRNAs from different species, a webserver was created to generate primer sets and provide template sequences for the synthesis of large sgRNA expression units based on the user-supplied target sequences and species.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , RNA Guia de Sistemas CRISPR-Cas , Proteína 9 Associada à CRISPR/genética , Clonagem MolecularRESUMO
Light scattering plays an important role in physics, with wide applications in science and engineering. However, accurate and effective modeling of scattering remains a great challenge. In this study, we exploited the rendering equation using hemispherical harmonics to demonstrate an angular frequency representation that directly depicts scattering in a two-dimensional spectrum, free from any underlying assumptions. This representation offers a compact and intuitive characterization of mirror reflection, isotropic scattering, and anisotropic emission. The robust support of theoretical proofs and data-driven experimental results establishes the broad applicability of our computational model in conducting scattering analyses across diffuse, specular, and glossy materials. With the capability to characterize the scattering in angular frequency domain, we expect our proposed model to emerge as an essential tool in various domains, including surface feature recognition, reflectance data compression, and computer rendering.
RESUMO
Lactic acid bacteria (LAB) have been recognized as safe microorganism that improve micro-flora disturbances and enhance immune response. A well-know traditional herbal medicine, Acanthopanax senticosus (As) was extensively utilized in aquaculture to improve growth performance and disease resistance. Particularly, the septicemia, skin wound and gastroenteritis caused by Aeromonas hydrophila threaten the health of aquatic animals and human. However, the effects of probiotic fermented with A. senticosus product on the immune regulation and pathogen prevention in fish remain unclear. Here, the aim of the present study was to elucidate whether the A. senticosus fermentation by Lactobacillus rhamnosus improve immune barrier function. The crucian carp were fed with basal diet supplemented with L. rhamnosus fermented A. senticosus cultures at 2 %, 4 %, 6 % and 8 % bacterial inoculum for 8 weeks. After trials, the weight gain rate (WGR), specific growth rate (SGR) were significantly increased, especially in LGG-6 group. The results confirmed that the level of the CAT, GSH-PX, SOD, lysozyme, and MDA was enhanced in fish received with probiotic fermented product. Moreover, the L. rhamnosus fermented A. senticosus cultures could trigger innate and adaptive immunity, including the up-regulation of the C3, C4, and IgM concentration. The results of qRT-PCR revealed that stronger mRNA transcription of IL-1ß, IL-10, IFN-γ, TNF-α, and MyD88 genes in the liver, spleen, kidney, intestine and gills tissues of fish treated with probiotic fermented with A. senticosus product. After infected with A. hydrophila, the survival rate of the LGG-2 (40 %), LGG-4 (50 %), LGG-6 (60 %), LGG-8 (50 %) groups was higher than the control group. Meanwhile, the pathological damage of the liver, spleen, head-kidney, and intestine tissues of probiotic fermentation-fed fish could be alleviated after pathogen infection. Therefore, the present work indicated that L. rhamnosus fermented A. senticosus could be regard as a potential intestine-target therapy strategy to protecting fish from pathogenic bacteria infection.
Assuntos
Aeromonas hydrophila , Antioxidantes , Carpas , Eleutherococcus , Fermentação , Doenças dos Peixes , Lacticaseibacillus rhamnosus , Probióticos , Animais , Lacticaseibacillus rhamnosus/metabolismo , Carpas/microbiologia , Probióticos/farmacologia , Probióticos/administração & dosagem , Antioxidantes/metabolismo , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/microbiologia , Doenças dos Peixes/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/imunologia , Ração Animal , Inflamação/prevenção & controle , Citocinas/metabolismo , AquiculturaRESUMO
We introduce perfect correlation vortices and show that the degree of coherence of any such vortex at the source is nearly statistically homogeneous and independent of the topological charge of the vortex. We demonstrate that while slowly diffracting in free space, perfect correlation vortices maintain their "perfect" vortex structure; they are capable of preserving said structure even in strong atmospheric turbulence. Structural resilience to diffraction and turbulence sets the discovered perfect vortices apart from their coherent cousins and makes them suitable for free-space optical communications.
RESUMO
AIMS: The purpose of this study was to explore the role of RAE1 in the invasion and metastasis of gastric cancer (GC) cells. MATERIALS AND METHODS: RAE1 expression in GC cells was determined by reverse-transcription polymerase chain reaction (qRT-PCR) and Western blotting (WB). Cell models featuring RAE1 gene silencing and overexpression were constructed by lentiviral transfection; The proliferation, migration, and invasion ability of cells were detected by cell counting, colony formation assay, would healing assay, and transwell invasion and migration test. WB analysis of ERK/MAPK signaling pathway (ERK1/2, p-ERK1/2, c-Myc) and EMT-related molecules (ZEB1, E-cadherin, N-cadherin, and Vimentin). RESULTS: The expression level of RAE1 in GC was notably higher than in adjacent tissues. Elevated RAE1 expression correlated with an unfavorable prognosis for GC patients. Knockdown of RAE1, as compared to the control group, resulted in a significant inhibition of proliferation, migration, and invasion abilities in GC cell lines. Furthermore, RAE1 knockdown led to a substantial decrease in the expression of N-cadherin, vimentin, ZEB1, p-ERK1/2, and c-Myc proteins, coupled with a marked increase in E-cadherin expression. The biological effects of RAE1 in GC cells were effectively reversed by the inhibition of the ERK/MAPK signaling pathway using SCH772984. Additionally, RAE1 knockdown demonstrated a suppressive effect on GC tumor size in vivo. Immunohistochemistry (IHC) results revealed significantly lower expression of Ki-67 in RAE1 knockout mice compared to the control group. CONCLUSIONS: RAE1 promotes GC cell migration and invasion through the ERK/MAPK pathway and is a potential therapeutic target for GC therapy.
Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Gástricas , Animais , Humanos , Camundongos , Caderinas/genética , Caderinas/metabolismo , Carcinogênese , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Invasividade Neoplásica/genética , Proteínas Associadas à Matriz Nuclear/genética , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Vimentina/genética , Vimentina/metabolismoRESUMO
Chemotherapy plays a crucial role in the clinical treatment of triple-negative breast cancer (TNBC), but drug resistance limits its clinical application. The active ingredients of Chaihu Shugan Powder (CSP; Bupleurum Liver-Coursing Powder), quercetin and luteolin, both belong to flavonoid compounds and have significant anti-tumor potential, which can promote chemotherapy sensitivity. However, the correlation between the two and TNBC paclitaxel (PTX) chemotherapy sensitivity is unknown. We collected herbal components of CSP from the TCMSP database, and screened effective molecules and corresponding targets. STRING database was utilized to construct a protein-protein interaction network combining effective molecules and target genes. The top 50 nodes ranked by affinity were chosen for subsequent functional analysis, and the drug-active ingredient-gene interaction network was established using Cytoscape software. Molecular docking was used to determine the small molecules that target TNBC PTX resistance. The "clusterProfiler" package was utilized for GO and KEGG enrichment analyses on the top 50 genes to determine the pathways affected by CSP. Cell counting and colony formation assays evaluated cell viability, IC50 values, and proliferation capacity. Flow cytometry tested PTX intracellular accumulation. Western blot assayed the expression of TNF pathway-related proteins. Active ingredients of CSP, quercetin and luteolin, could inhibit TNBC cell proliferation and promote PTX chemotherapy sensitization. Quercetin and luteolin repressed the TNF signaling pathway and promoted PTX chemotherapy sensitization. Quercetin and luteolin could inhibit TNBC cell proliferation and promote PTX chemotherapy sensitization through the TNF signaling pathway. Therefore, the use of quercetin and luteolin plus PTX treatment provides a prospective strategy for TNBC treatment.
Assuntos
Luteolina , Simulação de Acoplamento Molecular , Paclitaxel , Quercetina , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Humanos , Paclitaxel/farmacologia , Linhagem Celular Tumoral , Feminino , Luteolina/farmacologia , Luteolina/química , Quercetina/farmacologia , Quercetina/química , Proliferação de Células/efeitos dos fármacos , Mapas de Interação de Proteínas/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Pós/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/químicaRESUMO
Nanobodies (Nbs) represent a class of single-domain antibodies with great potential application value across diverse biotechnology fields, including therapy and diagnostics. Thymic Stromal Lymphopoietin (TSLP) is an epithelial cell-derived cytokine, playing a crucial role in the regulation of type 2 immune responses at barrier surfaces such as skin and the respiratory/gastrointestinal tract. In this study, a method for the expression and purification of anti-TSLP nanobody (Nb3341) was established at 7 L scale and subsequently scaled up to 100 L scale. Key parameters, including induction temperature, methanol feed and induction pH were identified as key factors by Plackett-Burman design (PBD) and were optimized in 7 L bioreactor, yielding optimal values of 24 °C, 8.5 mL/L/h and 6.5, respectively. Furthermore, Diamond Mix-A and Diamond MMC were demonstrated to be the optimal capture and polishing resins. The expression and purification process of Nb3341 at 100L scale resulted in 22.97 g/L titer, 98.7% SEC-HPLC purity, 95.7% AEX-HPLC purity, 4 ppm of HCP content and 1 pg/mg of HCD residue. The parameters of the scaling-up process were consistent with the results of the optimized process, further demonstrating the feasibility and stability of this method. This study provides a highly promising and competitive approach for transitioning from laboratory-scale to commercial production-scale of nanobodies.