Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Opt Express ; 31(11): 18468-18486, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37381557

RESUMO

The preceding works introduced the leapfrog complying divergence implicit finite-difference time-domain (CDI-FDTD) method, which exhibits high accuracy and unconditional stability. In this study, the method is reformulated to simulate general electrically anisotropic and dispersive media. The auxiliary differential equation (ADE) method is employed to solve the equivalent polarization currents, which are then integrated into the CDI-FDTD method. The iterative formulae are presented, and the calculation method is similar to that of the traditional CDI-FDTD method. Additionally, the Von Neumann method is utilized to analyze the unconditional stability of the proposed method. To evaluate the performance of the proposed method, three numerical cases are conducted. These include calculating the transmission and reflection coefficients of a monolayer graphene sheet and a monolayer magnetized plasma, as well as the scattering properties of a cubic block plasma. The numerical results obtained by the proposed method demonstrate its accuracy and efficiency in simulating general anisotropic dispersive media, compared to both the analytical method and the traditional FDTD method.

2.
Opt Lett ; 48(6): 1383-1386, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36946933

RESUMO

This work presents an approach to realize the dispersion engineering of spoof plasmonic metamaterials with controllable cutoff frequencies. Interdigital capacitance structures are applied to construct the unit cells. Dispersion properties are firstly analyzed to investigate the effects of interdigital capacitance, and the influence of the geometrical parameters of the proposed unit cell on the cutoff frequencies is studied. Then, a spoof surface plasmon polariton (SSPP) transmission line (TL) is developed based on the proposed unit cell together with a smooth transition. The matching principles of the transition are explained by the dispersion curves and the normalized impedance of the corresponding matching unit cells. Finally, the transmission characteristics of the TL are simulated and measured to validate the feasibility of the proposed strategy. Both the lower and upper cutoff frequencies can be tuned jointly by the extra degrees of freedom provided by the interdigital capacitance structures. In comparison with designs based on a substrate-integrated waveguide (SIW), the proposed strategy can reduce the transversal dimension by a factor of two under the same conditions. This work can greatly accelerate the development of versatile microwave integrated circuits and systems based on spoof plasmonic metamaterials.

3.
Int J Electron Commun ; 120: 153207, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32322160

RESUMO

This article presents a novel single-feed circularly polarized patch antenna for dual-band (2.6 and 3.4 GHz) applications. Details of the design procedure and design considerations of the proposed antenna are described. The novelties of the proposed antenna are counted by (i) a meaningful Jia-shaped patch used as the primary radiator; (ii) a 3D L-shaped feeding probe used to excite the stacked patches so that the near degenerate-modes are excited at the desired dual band; (iii) down-tilt beams achieved that are particularly suitable for wall-mount base-stations. The measured 3-dB axial-ratio bandwidths are 2.41-2.61 GHz and 3.25-3.42 GHz, where the maximum gains are recorded as 7.3 and 6.3 dBic, respectively. Methods for the adjustment of band ratio down to 1.18 are discussed. The overall antenna size is 100 × 100 × 12.8 mm3.

4.
J Sci Food Agric ; 99(4): 1709-1718, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30221355

RESUMO

BACKGROUND: Bruising time of apple is one of the most important factors for internal quality assessment. The present study aimed to establish a non-destructive method for the classification of apple bruising time using visible and near-infrared (VNIR) hyperspectral imaging. In this study, VNIR hyperspectral images were obtained and analyzed at seven bruising periods. Moreover, regions of interest (ROIs) were chosen to construct the bruised region classification model, and spectra of bruised regions were collected and resampled based on four different methods. Subsequently, machine learning algorithms were employed and used for dealing with the time classification model of apples. In order to reduce data redundancy and improve the accuracy of the classification model, a tree-based assembling learning model was used to select feature wavelengths, and linear discriminant analysis (LDA) was used to improve the discernibility of data. RESULTS: The results revealed that the random forest (RF) model can precisely locate bruised regions, while the gradient boosting decision tree (GBDT) model can validly classify apple bruising times with 70.59% accuracy. Data of 128 wavebands were compressed to 13 wavebands, providing a high accuracy of 92.86%. CONCLUSION: The results prove that the hyperspectral technique can be used for predicting apple bruising time, which will help to assess the internal quality and safety of apples. © 2018 Society of Chemical Industry.


Assuntos
Malus/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Algoritmos , Análise Discriminante , Frutas/química , Frutas/classificação , Malus/classificação , Controle de Qualidade
5.
Entropy (Basel) ; 21(6)2019 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-33267269

RESUMO

A novel robust proportionate affine projection (AP) algorithm is devised for estimating sparse channels, which often occur in network echo and wireless communication channels. The newly proposed algorithm is realized by using the maximum correntropy criterion (MCC) and the data reusing scheme used in AP to overcome the identification performance degradation of the traditional PAP algorithm in impulsive noise environments. The proposed algorithm is referred to as the proportionate affine projection maximum correntropy criterion (PAPMCC) algorithm, which is derived in the context of channel estimation framework. Many simulation results were obtained to verify that the PAPMCC algorithm is superior to early reported AP algorithms with different input signals under impulsive noise environments.

6.
Sensors (Basel) ; 18(2)2018 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-29439495

RESUMO

This article proposes a novel active localization method based on the mixed polarization multiple signal classification (MP-MUSIC) algorithm for positioning a metal target or an insulator target in the underwater environment by using a uniform circular antenna (UCA). The boundary element method (BEM) is introduced to analyze the boundary of the target by use of a matrix equation. In this method, an electric dipole source as a part of the locating system is set perpendicularly to the plane of the UCA. As a result, the UCA can only receive the induction field of the target. The potential of each electrode of the UCA is used as spatial-temporal localization data, and it does not need to obtain the field component in each direction compared with the conventional fields-based localization method, which can be easily implemented in practical engineering applications. A simulation model and a physical experiment are constructed. The simulation and the experiment results provide accurate positioning performance, with the help of verifying the effectiveness of the proposed localization method in underwater target locating.

7.
J Opt Soc Am A Opt Image Sci Vis ; 34(4): 648-656, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28375335

RESUMO

Cross-scale cost aggregation (CSCA) allows pixel-wise multiscale interaction in the aggregated cost computation. This kind of multiscale constraint strengthens the consistency of interscale cost volume and behaves well in a textureless region, compared with single-scale cost aggregation. However, the relationship between neighbors' cost is ignored. Based on the prior knowledge that costs should vary smoothly, except at object boundaries, the smoothness constraint on cost in a neighborhood system is integrated into the CSCA model with weighted least squares for reliable matching in this paper. Our improved algorithm not only has the advantage of CSCA in computational efficiency, but also performs better than CSCA, especially on the KITTI data sets. Experimental evidence demonstrates that the proposed algorithm outperforms CSCA in textureless and discontinuous regions. Quantitative evaluations demonstrate the effectiveness and efficiency of the proposed method for improving disparity estimation accuracy.

8.
ScientificWorldJournal ; 2014: 572969, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24782663

RESUMO

To make use of the sparsity property of broadband multipath wireless communication channels, we mathematically propose an l p -norm-constrained proportionate normalized least-mean-square (LP-PNLMS) sparse channel estimation algorithm. A general l p -norm is weighted by the gain matrix and is incorporated into the cost function of the proportionate normalized least-mean-square (PNLMS) algorithm. This integration is equivalent to adding a zero attractor to the iterations, by which the convergence speed and steady-state performance of the inactive taps are significantly improved. Our simulation results demonstrate that the proposed algorithm can effectively improve the estimation performance of the PNLMS-based algorithm for sparse channel estimation applications.


Assuntos
Algoritmos , Modelos Teóricos , Tecnologia sem Fio
9.
ScientificWorldJournal ; 2014: 937252, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24790588

RESUMO

We propose a smooth approximation l(0)-norm constrained affine projection algorithm (SL0-APA) to improve the convergence speed and the steady-state error of affine projection algorithm (APA) for sparse channel estimation. The proposed algorithm ensures improved performance in terms of the convergence speed and the steady-state error via the combination of a smooth approximation l(0)-norm (SL0) penalty on the coefficients into the standard APA cost function, which gives rise to a zero attractor that promotes the sparsity of the channel taps in the channel estimation and hence accelerates the convergence speed and reduces the steady-state error when the channel is sparse. The simulation results demonstrate that our proposed SL0-APA is superior to the standard APA and its sparsity-aware algorithms in terms of both the convergence speed and the steady-state behavior in a designated sparse channel. Furthermore, SL0-APA is shown to have smaller steady-state error than the previously proposed sparsity-aware algorithms when the number of nonzero taps in the sparse channel increases.


Assuntos
Modelos Teóricos , Algoritmos
10.
Sci Total Environ ; 913: 169586, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38160844

RESUMO

CO2 emissions from power plants are the dominant source of global CO2 emissions, thus in the context of global warming, accurate estimation of CO2 emissions from power plants is essential for the effective control of carbon emissions. Based on the XCO2 retrievals from the Orbiting Carbon Observatory 2 (OCO-2) and the Gaussian Plume Model (GPM), a series of studies have been carried out to estimate CO2 emission from power plants. However, the GPM is an ideal model, and there are a number of assumptions that need to be made when using this model, resulting in large uncertainties in the inverted emissions. Here, based on 6 cases of power plant plumes observed by the OCO-2 satellite over the Yangtze River Delta, China, we use an inline plume rise module coupled in the Community Multi-scale Air Quality model (CMAQ) to simulate the plumes and invert the emissions, and compare the simulated plumes and inverted emissions using the GPM model. We found that CO2 emissions can be significantly overestimated or underestimated based on the GPM simulations, and that the CMAQ inline plume simulation could significantly improve the estimates. However, the simulation bias in wind speed can significantly affect the inversion results. These results indicate that accurate meteorological field and plume simulations are critical for future inversion of point source emissions.

11.
ScientificWorldJournal ; 2013: 402914, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24222733

RESUMO

A coplanar waveguide (CPW)-fed circular slot antenna with wide tunable dual band-notched function and frequency reconfigurable characteristic is designed, and its performance is verified experimentally for ultra-wideband (UWB) communication applications. The dual band-notched function is achieved by using a T-shaped stepped impedance resonator (T-SIR) inserted inside the circular ring radiation patch and by etching a parallel stub loaded resonator (PSLR) in the CPW transmission line, while the wide tunable bands can be implemented by adjusting the dimensions of the T-SIR and the PSLR. The notch band reconfigurable characteristic is realized by integrating three switches into the T-SIR and the PSLR. The numerical and experimental results show that the proposed antenna has a wide bandwidth ranging from 2.7 GHz to 12 GHz with voltage standing wave ratio (VSWR) less than 2, except for the two notch bands operating at 3.8-5.9 GHz and 7.7-9.2 GHz, respectively. In addition, the proposed antenna has been optimized to a compact size and can provide omnidirectional radiation patterns, which are suitable for UWB communication applications.


Assuntos
Ondas de Rádio , Rádio/instrumentação , Tecnologia sem Fio/instrumentação
12.
Environ Sci Ecotechnol ; 12: 100210, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36338337

RESUMO

Sudden mega natural gas leaks of two Nord Stream pipelines in the Baltic Sea (Denmark) occurred from late September to early October 2022, releasing large amounts of methane into the atmosphere. We inferred the methane emissions of this event based on surface in situ observations using two inversion methods and two meteorological reanalysis datasets, supplemented with satellite-based observations. We conclude that approximately 220 ± 30 Gg of methane was released from September 26 to October 1, 2022.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA