Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.299
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 618(7964): 294-300, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36940729

RESUMO

Chiral amines are commonly used in the pharmaceutical and agrochemical industries1. The strong demand for unnatural chiral amines has driven the development of catalytic asymmetric methods1,2. Although the N-alkylation of aliphatic amines with alkyl halides has been widely adopted for over 100 years, catalyst poisoning and unfettered reactivity have been preventing the development of a catalyst-controlled enantioselective version3-5. Here we report the use of chiral tridentate anionic ligands to enable the copper-catalysed chemoselective and enantioconvergent N-alkylation of aliphatic amines with α-carbonyl alkyl chlorides. This method can directly convert feedstock chemicals, including ammonia and pharmaceutically relevant amines, into unnatural chiral α-amino amides under mild and robust conditions. Excellent enantioselectivity and functional-group tolerance were observed. The power of the method is demonstrated in a number of complex settings, including late-stage functionalization and in the expedited synthesis of diverse amine drug molecules. The current method indicates that multidentate anionic ligands are a general solution for overcoming transition-metal-catalyst poisoning.


Assuntos
Alquilação , Aminas , Catálise , Cobre , Amidas/química , Aminas/química , Cobre/química , Ligantes , Preparações Farmacêuticas/química
2.
Nature ; 618(7964): 374-382, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225988

RESUMO

Cancer alters the function of multiple organs beyond those targeted by metastasis1,2. Here we show that inflammation, fatty liver and dysregulated metabolism are hallmarks of systemically affected livers in mouse models and in patients with extrahepatic metastasis. We identified tumour-derived extracellular vesicles and particles (EVPs) as crucial mediators of cancer-induced hepatic reprogramming, which could be reversed by reducing tumour EVP secretion via depletion of Rab27a. All EVP subpopulations, exosomes and principally exomeres, could dysregulate hepatic function. The fatty acid cargo of tumour EVPs-particularly palmitic acid-induced secretion of tumour necrosis factor (TNF) by Kupffer cells, generating a pro-inflammatory microenvironment, suppressing fatty acid metabolism and oxidative phosphorylation, and promoting fatty liver formation. Notably, Kupffer cell ablation or TNF blockade markedly decreased tumour-induced fatty liver generation. Tumour implantation or pre-treatment with tumour EVPs diminished cytochrome P450 gene expression and attenuated drug metabolism in a TNF-dependent manner. We also observed fatty liver and decreased cytochrome P450 expression at diagnosis in tumour-free livers of patients with pancreatic cancer who later developed extrahepatic metastasis, highlighting the clinical relevance of our findings. Notably, tumour EVP education enhanced side effects of chemotherapy, including bone marrow suppression and cardiotoxicity, suggesting that metabolic reprogramming of the liver by tumour-derived EVPs may limit chemotherapy tolerance in patients with cancer. Our results reveal how tumour-derived EVPs dysregulate hepatic function and their targetable potential, alongside TNF inhibition, for preventing fatty liver formation and enhancing the efficacy of chemotherapy.


Assuntos
Vesículas Extracelulares , Ácidos Graxos , Fígado Gorduroso , Fígado , Neoplasias Pancreáticas , Animais , Camundongos , Sistema Enzimático do Citocromo P-450/genética , Vesículas Extracelulares/metabolismo , Ácidos Graxos/metabolismo , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/prevenção & controle , Fígado/metabolismo , Fígado/patologia , Fígado/fisiopatologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Microambiente Tumoral , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo , Neoplasias Hepáticas/secundário , Humanos , Inflamação/metabolismo , Ácido Palmítico/metabolismo , Células de Kupffer , Fosforilação Oxidativa , Proteínas rab27 de Ligação ao GTP/deficiência
3.
Nature ; 587(7833): 313-318, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32698188

RESUMO

Persistently depolarizing sodium (Na+) leak currents enhance electrical excitability1,2. The ion channel responsible for the major background Na+ conductance in neurons is the Na+ leak channel, non-selective (NALCN)3,4. NALCN-mediated currents regulate neuronal excitability linked to respiration, locomotion and circadian rhythm4-10. NALCN activity is under tight regulation11-14 and mutations in NALCN cause severe neurological disorders and early death15,16. NALCN is an orphan channel in humans, and fundamental aspects of channel assembly, gating, ion selectivity and pharmacology remain obscure. Here we investigate this essential leak channel and determined the structure of NALCN in complex with a distinct auxiliary subunit, family with sequence similarity 155 member A (FAM155A). FAM155A forms an extracellular dome that shields the ion-selectivity filter from neurotoxin attack. The pharmacology of NALCN is further delineated by a walled-off central cavity with occluded lateral pore fenestrations. Unusual voltage-sensor domains with asymmetric linkages to the pore suggest mechanisms by which NALCN activity is modulated. We found a tightly closed pore gate in NALCN where the majority of missense patient mutations cause gain-of-function phenotypes that cluster around the S6 gate and distinctive π-bulges. Our findings provide a framework to further study the physiology of NALCN and a foundation for discovery of treatments for NALCN channelopathies and other electrical disorders.


Assuntos
Microscopia Crioeletrônica , Canais Iônicos/química , Canais Iônicos/ultraestrutura , Proteínas de Membrana/química , Proteínas de Membrana/ultraestrutura , Mutação com Ganho de Função , Células HEK293 , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Mutação de Sentido Incorreto , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
4.
Genome Res ; 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948368

RESUMO

Understanding the genetic mechanisms of phenotypic variation in hybrids between domestic animals and their wild relatives may aid germplasm innovation. Here, we report the high-quality genome assemblies of a male Pamir argali (O ammon polii, 2n = 56), a female Tibetan sheep (O aries, 2n = 54), and a male hybrid of Pamir argali and domestic sheep, and the high-throughput sequencing of 425 ovine animals, including the hybrids of argali and domestic sheep. We detected genomic synteny between Chromosome 2 of sheep and two acrocentric chromosomes of argali. We revealed consistent satellite repeats around the chromosome breakpoints, which could have resulted in chromosome fusion. We observed many more hybrids with karyotype 2n = 54 than with 2n = 55, which could be explained by the selfish centromeres, the possible decreased rate of normal/balanced sperm, and the increased incidence of early pregnancy loss in the aneuploid ewes or rams. We identified genes and variants associated with important morphological and production traits (e.g., body weight, cannon circumference, hip height, and tail length) that show significant variations. We revealed a strong selective signature at the mutation (c.334C > A, p.G112W) in TBXT and confirmed its association with tail length among sheep populations of wide geographic and genetic origins. We produced an intercross population of 110 F2 offspring with varied number of vertebrae and validated the causal mutation by whole-genome association analysis. We verified its function using CRISPR-Cas9 genome editing. Our results provide insights into chromosomal speciation and phenotypic evolution and a foundation of genetic variants for the breeding of sheep and other animals.

5.
Proc Natl Acad Sci U S A ; 119(50): e2122494119, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36469777

RESUMO

Physical interfaces widely exist in nature and engineering. Although the formation of passive interfaces is well elucidated, the physical principles governing active interfaces remain largely unknown. Here, we combine simulation, theory, and cell-based experiment to investigate the evolution of an active-active interface. We adopt a biphasic framework of active nematic liquid crystals. We find that long-lived topological defects mechanically energized by activity display unanticipated dynamics nearby the interface, where defects perform "U-turns" to keep away from the interface, push the interface to develop local fingers, or penetrate the interface to enter the opposite phase, driving interfacial morphogenesis and cross-interface defect transport. We identify that the emergent interfacial morphodynamics stems from the instability of the interface and is further driven by the activity-dependent defect-interface interactions. Experiments of interacting multicellular monolayers with extensile and contractile differences in cell activity have confirmed our predictions. These findings reveal a crucial role of topological defects in active-active interfaces during, for example, boundary formation and tissue competition that underlie organogenesis and clinically relevant disorders.


Assuntos
Cristais Líquidos , Cristais Líquidos/química , Simulação por Computador
6.
Med Res Rev ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711187

RESUMO

Previously, lysosomes were primarily referred to as the digestive organelles and recycling centers within cells. Recent discoveries have expanded the lysosomal functional scope and revealed their critical roles in nutrient sensing, epigenetic regulation, plasma membrane repair, lipid transport, ion homeostasis, and cellular stress response. Lysosomal dysfunction is also found to be associated with aging and several diseases. Therefore, function of macroautophagy, a lysosome-dependent intracellular degradation system, has been identified as one of the updated twelve hallmarks of aging. In this review, we begin by introducing the concept of lysosomal quality control (LQC), which is a cellular machinery that maintains the number, morphology, and function of lysosomes through different processes such as lysosomal biogenesis, reformation, fission, fusion, turnover, lysophagy, exocytosis, and membrane permeabilization and repair. Next, we summarize the results from studies reporting the association between LQC dysregulation and aging/various disorders. Subsequently, we explore the emerging therapeutic strategies that target distinct aspects of LQC for treating diseases and combatting aging. Lastly, we underscore the existing knowledge gap and propose potential avenues for future research.

7.
BMC Genomics ; 25(1): 373, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627659

RESUMO

The common dolphin (Delphinus delphis) is widely distributed worldwide and well adapted to various habitats. Animal genomes store clues about their pasts, and can reveal the genes underlying their evolutionary success. Here, we report the first high-quality chromosome-level genome of D. delphis. The assembled genome size was 2.56 Gb with a contig N50 of 63.85 Mb. Phylogenetically, D. delphis was close to Tursiops truncatus and T. aduncus. The genome of D. delphis exhibited 428 expanded and 1,885 contracted gene families, and 120 genes were identified as positively selected. The expansion of the HSP70 gene family suggested that D. delphis has a powerful system for buffering stress, which might be associated with its broad adaptability, longevity, and detoxification capacity. The expanded IFN-α and IFN-ω gene families, as well as the positively selected genes encoding tripartite motif-containing protein 25, peptidyl-prolyl cis-trans isomerase NIMA-interacting 1, and p38 MAP kinase, were all involved in pathways for antiviral, anti-inflammatory, and antineoplastic mechanisms. The genome data also revealed dramatic fluctuations in the effective population size during the Pleistocene. Overall, the high-quality genome assembly and annotation represent significant molecular resources for ecological and evolutionary studies of Delphinus and help support their sustainable treatment and conservation.


Assuntos
Golfinhos Comuns , Animais , Evolução Biológica , Cromossomos/genética , Imunidade Inata/genética , Filogenia
8.
J Am Chem Soc ; 146(1): 450-459, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38151238

RESUMO

Spatially confining isolated atomic sites in low-dimensional nanostructures is a promising strategy for preparing high-performance single-atom catalysts (SACs). Herein, fascinating polyoxometalate cluster-based single-walled nanotubes (POM-SWNTs) with atomically precise structures, uniform diameter, and single-cluster wall thickness are constructed by lacunary POM clusters (PW11 and P2W17 clusters). Isolated metal centers are accurately incorporated into the PW11-SWNTs and P2W17-SWNTs supports. The structures of the resulting MPW11-SWNTs and MP2W17-SWNTs are well established (M = Cu, Pt). Molecular dynamics simulations demonstrate the stability of POM-SWNTs. Furthermore, the turnover frequency of PtP2W17-SWNTs is 20 times higher than that of PtP2W17 cluster units and 140 times higher than that of Pt nanoparticles in the alcoholysis of dimethylphenylsilane. Theoretical studies indicate that incorporating a Pt atom into the P2W17 support induces straightforward electron transfer between them, combining the nanoconfined environment to enhance the catalytic activity of PtP2W17-SWNTs. This work shows the feasibility of using subnanometric POM clusters to assemble single-walled cluster nanotubes, highlighting their potential to prepare superior SACs with precise structures.

9.
J Am Chem Soc ; 146(13): 9444-9454, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38513075

RESUMO

The 3d transition metal-catalyzed enantioconvergent radical cross-coupling provides a powerful tool for chiral molecule synthesis. In the classic mechanism, the bond formation relies on the interaction between nucleophile-sequestered metal complexes and radicals, limiting the nucleophile scope to sterically uncongested ones. The coupling of sterically congested nucleophiles poses a significant challenge due to difficulties in transmetalation, restricting the reaction generality. Here, we describe a probable outer-sphere nucleophilic attack mechanism that circumvents the challenging transmetalation associated with sterically congested nucleophiles. This strategy enables a general copper-catalyzed enantioconvergent radical N-alkylation of aromatic amines with secondary/tertiary alkyl halides and exhibits catalyst-controlled stereoselectivity. It accommodates diverse aromatic amines, especially bulky secondary and primary ones to deliver value-added chiral amines (>110 examples). It is expected to inspire the coupling of more nucleophiles, particularly challenging sterically congested ones, and accelerate reaction generality.

10.
Br J Haematol ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671583

RESUMO

There is an urgent need for an oral, efficient and safe regimen for high-risk APL under the pandemic of COVID-19. We retrospectively analysed 60 high-risk APL patients. For induction therapy (IT), in addition to all-trans retinoic acid (ATRA) and oral arsenic (RIF), 22 patients received oral etoposide (VP16) as cytotoxic chemotherapy (CC), and 38 patients received intravenous CC as historical control group. The median dose of oral VP16 was 1000 mg [interquartile rage (IQR), 650-1250]. One patient died during IT in the control group, 59 evaluable patients (100%) achieved complete haematological remission (CHR) after IT and complete molecular remission (CMR) after consolidation therapy. The median time to CHR and CMR was 36 days (33.8-44) versus 35 days (32-42; p = 0.75) and 3 months (0.8-3.5) versus 3.3 months (2.4-3.7; p = 0.58) in the oral VP16 group and in the control group. Two (9.1%) and 3 (7.9%) patients experienced molecular relapse in different group respectively. The 2-year estimated overall survival and event-free survival were 100% versus 94.7% (p = 0.37) and 90.9% versus 89.5% (p = 0.97) respectively. A completely oral, efficient and safe induction regimen including oral VP16 as cytoreductive chemotherapy combined with ATRA and RIF is more convenient to administer for patients with high-risk APL.

11.
Small ; 20(24): e2308502, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38168120

RESUMO

Core@shell catalyst composited of dual aluminosilicate zeolite can effectively regulate the distribution of acid sites to control hydrocarbon conversion process for the stable formation of target product. However, the diffusion restriction reduces the accessibility of inner active sites and affects synergy between core and shell. Herein, hollow ZSM-5 zeolite nanoreactor with inverse aluminum distribution and double shells are prepared and employed for methanol aromatization. It is demonstrated that the intershell cavity alleviated the steric hindrance from zeolites channel and provided more paths and pore entrance for guest molecule. Correspondingly, olefin intermediates generated from methanol over the external shell are easier to adsorb at internal acid sites for further reactions. Importantly, the diffusion of generated aromatic macromolecules to the external surface is also promoted, which slows down the formation of internal coke, and ensures the use of internal acid sites for aromatization. The aromatics selectivity of the nanoreactor remained at 8% after 154 h, while that of solid core@shell catalyst decreased to 2% after 75 h. This finding promises broader insight to improve internal active site utilization of core@shell catalyst at the diffusion level and can be great aid in the flexible design of multifunctional nanoreactors to enhance the relay efficiency.

12.
Small ; 20(23): e2310614, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38200684

RESUMO

Musculoskeletal (MSK) disorders significantly burden patients and society, resulting in high healthcare costs and productivity loss. These disorders are the leading cause of physical disability, and their prevalence is expected to increase as sedentary lifestyles become common and the global population of the elderly increases. Proper innervation is critical to maintaining MSK function, and nerve damage or dysfunction underlies various MSK disorders, underscoring the potential of restoring nerve function in MSK disorder treatment. However, most MSK tissue engineering strategies have overlooked the significance of innervation. This review first expounds upon innervation in the MSK system and its importance in maintaining MSK homeostasis and functions. This will be followed by strategies for engineering MSK tissues that induce post-implantation in situ innervation or are pre-innervated. Subsequently, research progress in modeling MSK disorders using innervated MSK organoids and organs-on-chips (OoCs) is analyzed. Finally, the future development of engineering innervated MSK tissues to treat MSK disorders and recapitulate disease mechanisms is discussed. This review provides valuable insights into the underlying principles, engineering methods, and applications of innervated MSK tissues, paving the way for the development of targeted, efficacious therapies for various MSK conditions.


Assuntos
Doenças Musculoesqueléticas , Engenharia Tecidual , Engenharia Tecidual/métodos , Humanos , Animais , Doenças Musculoesqueléticas/terapia , Medicina Regenerativa/métodos , Ortopedia
13.
Small ; : e2312135, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501794

RESUMO

Carbon fiber (CF) is a potential microwave absorption (MA) material due to the strong dielectric loss. Nevertheless, owing to the high conductivity, poor impedance matching of carbon-based  materials results in limited MA performance. How to solve this problem and achieve excellent MA performance remains a principal challenge. Herein, taking full advantage of CF and excellent impedance matching of bimetallic metal-organic frameworks (MOF) derivatives layer, an excellent microwave absorber based on micron-scale 1D CF and NiCoMOF (CF@NiCoMOF-800) is developed. After adjusting the oxygen vacancies of the bimetallic MOF, the resultant microwave absorber presented excellent MA properties including the minimum reflection loss (RLmin ) of -80.63 dB and wide effective absorption bandwidth (EAB) of 8.01 GHz when its mass percent is only 5 wt.% and the thickness is 2.59 mm. Simultaneously, the mechanical properties of the epoxy resin (EP)-based coating with this microwave absorber are effectively improved. The hardness (H), elastic modulus (E), bending strength, and compressive strength of CF@NiCoMOF-800/EP coating are 334 MPa, 5.56 GPa, 82.2 MPa, and 135.8 MPa, which is 38%, 15%, 106% and 53% higher than EP coating. This work provides a promising solution for carbon materials achieving excellent MA properties and mechanical properties.

14.
Small ; : e2402842, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38923165

RESUMO

The nacre-inspired multi-nanolayer structure offers a unique combination of advanced mechanical properties, such as strength and crack tolerance, making them highly versatile for various applications. Nevertheless, a significant challenge lies in the current fabrication methods, which is difficult to create a scalable manufacturing process with precise control of hierarchical structure. In this work, a novel strategy is presented to regulate nacre-like multi-nanolayer films with the balance mechanical properties of stiffness and toughness. By utilizing a co-continuous phase structure and an extensional stress field, the hierarchical nanolayers is successfully constructed with tunable sizes using a scalable processing technique. This strategic modification allows the robust phase to function as nacre-like platelets, while the soft phase acts as a ductile connection layer, resulting in exceptional comprehensive properties. The nanolayer-structured films demonstrate excellent isotropic properties, including a tensile strength of 113.5 MPa in the machine direction and 106.3 MPa in a transverse direction. More interestingly, these films unprecedentedly exhibit a remarkable puncture resistance at the same time, up to 324.8 N mm-1, surpassing the performance of other biodegradable films. The scalable fabrication strategy holds significant promise in designing advanced bioinspired materials for diverse applications.

15.
Chembiochem ; 25(7): e202300742, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38426686

RESUMO

Pesticides are essential in agricultural development. Controlled-release pesticides have attracted great attentions. Base on a principle of spatiotemporal selectivity, we extended the photoremovable protective group (PRPG) into agrochemical agents to achieve controllable release of active ingredients. Herein, we obtained NP-TBZ by covalently linking o-nitrobenzyl (NP) with thiabendazole (TBZ). Compound NP-TBZ can be controlled to release TBZ in dependent to light. The irradiated and unirradiated NP-TBZ showed significant differences on fungicidal activities both in vitro and in vivo. In addition, the irradiated NP-TBZ displayed similar antifungal activities to the directly-used TBZ, indicating a factual applicability in controllable release of TBZ. Furthermore, we explored the action mode and microcosmic variations by SEM analysis, and demonstrated that the irradiated NP-TBZ retained a same action mode with TBZ against mycelia growth.


Assuntos
Praguicidas , Tiabendazol , Tiabendazol/farmacologia , Tiabendazol/análise , Preparações de Ação Retardada , Antifúngicos/farmacologia
16.
Planta ; 259(2): 45, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281265

RESUMO

MAIN CONCLUSION: The divergence of subsect. Gerardianae was likely triggered by the uplift of the Qinghai-Tibetan Plateau and adjacent mountains. Pinus bungeana might have probably experienced expansion since Last Interglacial period. Historical geological and climatic oscillations have profoundly affected patterns of nucleotide variability, evolutionary history, and species divergence in numerous plants of the Northern Hemisphere. However, how long-lived conifers responded to geological and climatic fluctuations in East Asia remain poorly understood. Here, based on paternally inherited chloroplast genomes and maternally inherited mitochondrial DNA markers, we investigated the population demographic history and molecular evolution of subsect. Gerardianae (only including three species, Pinus bungeana, P. gerardiana, and P. squamata) of Pinus. A low level of nucleotide diversity was found in P. bungeana (π was 0.00016 in chloroplast DNA sequences, and 0.00304 in mitochondrial DNAs). The haplotype-based phylogenetic topology and unimodal distributions of demographic analysis suggested that P. bungeana probably originated in the southern Qinling Mountains and experienced rapid population expansion since Last Interglacial period. Phylogenetic analysis revealed that P. gerardiana and P. squamata had closer genetic relationship. The species divergence of subsect. Gerardianae occurred about 27.18 million years ago (Mya) during the middle to late Oligocene, which was significantly associated with the uplift of the Qinghai-Tibetan Plateau and adjacent mountains from the Eocene to the mid-Pliocene. The molecular evolutionary analysis showed that two chloroplast genes (psaI and ycf1) were under positive selection, the genetic lineages of P. bungeana exhibited higher transition and nonsynonymous mutations, which were involved with the strongly environmental adaptation. These findings shed light on the population evolutionary history of white pine species and provide striking insights for comprehension of their species divergence and molecular evolution.


Assuntos
Genoma de Cloroplastos , Pinus , Filogenia , Pinus/genética , Genoma de Cloroplastos/genética , Evolução Molecular , DNA de Cloroplastos/genética , DNA Mitocondrial/genética , Nucleotídeos , Demografia , Variação Genética
17.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34472585

RESUMO

Clustering and cell type classification are a vital step of analyzing scRNA-seq data to reveal the complexity of the tissue (e.g. the number of cell types and the transcription characteristics of the respective cell type). Recently, deep learning-based single-cell clustering algorithms become popular since they integrate the dimensionality reduction with clustering. But these methods still have unstable clustering effects for the scRNA-seq datasets with high dropouts or noise. In this study, a novel single-cell RNA-seq deep embedding clustering via convolutional autoencoder embedding and soft K-means (scCAEs) is proposed by simultaneously learning the feature representation and clustering. It integrates the deep learning with convolutional autoencoder to characterize scRNA-seq data and proposes a regularized soft K-means algorithm to cluster cell populations in a learned latent space. Next, a novel constraint is introduced to the clustering objective function to iteratively optimize the clustering results, and more importantly, it is theoretically proved that this objective function optimization ensures the convergence. Moreover, it adds the reconstruction loss to the objective function combining the dimensionality reduction with clustering to find a more suitable embedding space for clustering. The proposed method is validated on a variety of datasets, in which the number of clusters in the mentioned datasets ranges from 4 to 46, and the number of cells ranges from 90 to 30 302. The experimental results show that scCAEs is superior to other state-of-the-art methods on the mentioned datasets, and it also keeps the satisfying compatibility and robustness. In addition, for single-cell datasets with the batch effects, scCAEs can ensure the cell separation while removing batch effects.


Assuntos
Algoritmos , Análise de Célula Única , Análise por Conglomerados , RNA-Seq , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
18.
Bioinformatics ; 39(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36692145

RESUMO

MOTIVATION: Protein-protein interaction (PPI) networks and transcriptional regulatory networks are critical in regulating cells and their signaling. A thorough understanding of PPIs can provide more insights into cellular physiology at normal and disease states. Although numerous methods have been proposed to predict PPIs, it is still challenging for interaction prediction between unknown proteins. In this study, a novel neural network named AFTGAN was constructed to predict multi-type PPIs. Regarding feature input, ESM-1b embedding containing much biological information for proteins was added as a protein sequence feature besides amino acid co-occurrence similarity and one-hot coding. An ensemble network was also constructed based on a transformer encoder containing an AFT module (performing the weight operation on vital protein sequence feature information) and graph attention network (extracting the relational features of protein pairs) for the part of the network framework. RESULTS: The experimental results showed that the Micro-F1 of the AFTGAN based on three partitioning schemes (BFS, DFS and the random mode) on the SHS27K and SHS148K datasets was 0.685, 0.711 and 0.867, as well as 0.745, 0.819 and 0.920, respectively, all higher than that of other popular methods. In addition, the experimental comparisons confirmed the performance superiority of the proposed model for predicting PPIs of unknown proteins on the STRING dataset. AVAILABILITY AND IMPLEMENTATION: The source code is publicly available at https://github.com/1075793472/AFTGAN. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Redes Neurais de Computação , Software , Proteínas/química , Sequência de Aminoácidos , Mapas de Interação de Proteínas
19.
J Med Virol ; 96(4): e29582, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590253

RESUMO

To understand the prevalence of rhinovirus (RV) among acute respiratory infection (ARI) patients, 10-year ARI surveillance in multiple provinces of China were conducted during 2012-2021. Of 15 645 ARI patients, 1180 (7.54%) were confirmed to have RV infection and 820 (69.49%) were children under 5 years of age. RV typing was performed on the 527 VP1 gene sequences, and species A, B, and C accounted for 73.24%, 4.93%, and 21.82%, respectively. Although no significant difference in the proportions of age groups or disease severity was found between RV species, RV-C was more frequently detected in children under 5 years of age, RV-A was more frequently detected in elderly individuals (≥60), and the proportions of pneumonia in RV-A and RV-C patients were higher than those in RV-B patients. The epidemic peak of RV-A was earlier than that of RV-C. A total of 57 types of RV-A, 13 types of RV-B, and 35 types of RV-C were identified in RV-infected patients, and two uncertain RV types were also detected. The findings showed a few differences in epidemiological and clinical features between RV species in ARI patients, and RV-A and RV-C were more prevalent than RV-B.


Assuntos
Infecções por Enterovirus , Infecções por Picornaviridae , Infecções Respiratórias , Criança , Humanos , Lactente , Pré-Escolar , Idoso , Rhinovirus/genética , Prevalência , Infecções por Picornaviridae/epidemiologia , Infecções Respiratórias/epidemiologia , China/epidemiologia , Variação Genética
20.
Cytokine ; 173: 156436, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979214

RESUMO

Failure of bone healing after fracture often results in nonunion, but the underlying mechanism of nonunion pathogenesis is poorly understood. Herein, we provide evidence to clarify that the inflammatory microenvironment of atrophic nonunion (AN) mice suppresses the expression levels of DNA methyltransferases 2 (DNMT2) and 3A (DNMT3a), preventing the methylation of CpG islands on the promoters of C-terminal binding protein 1/2 (CtBP1/2) and resulting in their overexpression. Increased CtBP1/2 acts as transcriptional corepressors that, along with histone acetyltransferase p300 and Runt-related transcription factor 2 (Runx2), suppress the expression levels of six genes involved in bone healing: BGLAP (bone gamma-carboxyglutamate protein), ALPL (alkaline phosphatase), SPP1 (secreted phosphoprotein 1), COL1A1 (collagen 1a1), IBSP (integrin binding sialoprotein), and MMP13 (matrix metallopeptidase 13). We also observe a similar phenomenon in osteoblast cells treated with proinflammatory cytokines or treated with a DNMT inhibitor (5-azacytidine). Forced expression of DNMT2/3a or blockage of CtBP1/2 with their inhibitors can reverse the expression levels of BGLAP/ALPL/SPP1/COL1A1/IBSP/MMP13 in the presence of proinflammatory cytokines. Administration of CtBP1/2 inhibitors in fractured mice can prevent the incidence of AN. Thus, we demonstrate that the downregulation of bone healing genes dependent on proinflammatory cytokines/DNMT2/3a/CtBP1/2-p300-Runx2 axis signaling plays a critical role in the pathogenesis of AN. Disruption of this signaling may represent a new therapeutic strategy to prevent AN incidence after bone fracture.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Citocinas , DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3A , Consolidação da Fratura , Animais , Camundongos , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Citocinas/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Metiltransferases/metabolismo , Osteoblastos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Consolidação da Fratura/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A/genética , DNA Metiltransferase 3A/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA