Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 628(8007): 306-312, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438067

RESUMO

Perovskite bandgap tuning without quality loss makes perovskites unique among solar absorbers, offering promising avenues for tandem solar cells1,2. However, minimizing the voltage loss when their bandgap is increased to above 1.90 eV for triple-junction tandem use is challenging3-5. Here we present a previously unknown pseudohalide, cyanate (OCN-), with a comparable effective ionic radius (1.97 Å) to bromide (1.95 Å) as a bromide substitute. Electron microscopy and X-ray scattering confirm OCN incorporation into the perovskite lattice. This contributes to notable lattice distortion, ranging from 90.5° to 96.6°, a uniform iodide-bromide distribution and consistent microstrain. Owing to these effects, OCN-based perovskite exhibits enhanced defect formation energy and substantially decreased non-radiative recombination. We achieved an inverted perovskite (1.93 eV) single-junction device with an open-circuit voltage (VOC) of 1.422 V, a VOC × FF (fill factor) product exceeding 80% of the Shockley-Queisser limit and stable performance under maximum power point tracking, culminating in a 27.62% efficiency (27.10% certified efficiency) perovskite-perovskite-silicon triple-junction solar cell with 1 cm2 aperture area.

2.
Phys Rev Lett ; 130(8): 085201, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36898122

RESUMO

Weakly collisional and collisionless plasmas are typically far from local thermodynamic equilibrium (LTE), and understanding energy conversion in such systems is a forefront research problem. The standard approach is to investigate changes in internal (thermal) energy and density, but this omits energy conversion that changes any higher-order moments of the phase space density. In this Letter, we calculate from first principles the energy conversion associated with all higher moments of the phase space density for systems not in LTE. Particle-in-cell simulations of collisionless magnetic reconnection reveal that energy conversion associated with higher-order moments can be locally significant. The results may be useful in numerous plasma settings, such as reconnection, turbulence, shocks, and wave-particle interactions in heliospheric, planetary, and astrophysical plasmas.

3.
J Fungi (Basel) ; 10(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38667917

RESUMO

Fusarium sacchari is a causal agent of sugarcane Pokkah boeng, an important fungal disease that causes a considerable reduction in yield and sugar content in susceptible varieties of sugarcane worldwide. Despite its importance, the fungal factors that regulate the virulence of this pathogen remain largely unknown. In our previous study, mapping of an insertional mutant defect in virulence resulted in the identification of a cutinase G-box binding protein gene, designated FsCGBP, that encodes a C2H2-type transcription factor (TF). FsCGBP was shown to localize in the nuclei, and the transcript level of FsCGBP was significantly upregulated during the infection process or in response to abiotic stresses. Deletion or silencing of FsCGBP resulted in a reduction in mycelial growth, conidial production, and virulence and a delay in conidial germination in the F. sacchari. Cutinase genes FsCUT2, FsCUT3, and FsCUT4 and the mitogen-activated protein kinase (MAPK) genes FsHOG1, FsMGV1, and FsGPMK1, which were significantly downregulated in ΔFsCGBP. Except for FsHOG1, all of these genes were found to be transcriptionally activated by FsCGBP using the yeast one-hybrid system in vitro. The deletion of individual cutinase genes did not result in any of the phenotypes exhibited in the ΔFsCGBP mutant, except for cutinase activity. However, disruption of the MAPK pathway upon deletion of FsMGV1 or FsGPMK1 resulted in phenotypes similar to those of the ΔFsCGBP mutant. The above results suggest that FsCGBP functions by regulating the MAPK pathway and cutinase genes, providing new insights into the mechanism of virulence regulation in F. sacchari.

4.
Phys Rev E ; 109(1-2): 015205, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38366463

RESUMO

A common approach to assess the nature of energy conversion in a classical fluid or plasma is to compare power densities of the various possible energy conversion mechanisms. A leading research area is quantifying energy conversion for systems that are not in local thermodynamic equilibrium (LTE), as is common in a number of fluid and plasma systems. Here we introduce the "higher-order nonequilibrium term" (HORNET) effective power density, which quantifies the rate of change of departure of a phase space density from LTE. It has dimensions of power density, which allows for quantitative comparisons with standard power densities. We employ particle-in-cell simulations to calculate HORNET during two processes, magnetic reconnection and decaying kinetic turbulence in collisionless magnetized plasmas, that inherently produce non-LTE effects. We investigate the spatial variation of HORNET and the time evolution of its spatial average. By comparing HORNET with power densities describing changes to the internal energy (pressure dilatation, Pi-D, and divergence of the vector heat flux density), we find that HORNET can be a significant fraction of these other measures (8% and 35% for electrons and ions, respectively, for reconnection; up to 67% for both electrons and ions for turbulence), meaning evolution of the system towards or away from LTE can be dynamically important. Applications to numerous plasma phenomena are discussed.

5.
Nat Commun ; 14(1): 5392, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37666847

RESUMO

Tuning the composition of perovskites to approach the ideal bandgap raises the single-junction Shockley-Queisser efficiency limit of solar cells. The rapid development of narrow-bandgap formamidinium lead triiodide-based perovskites has brought perovskite single-junction solar cell efficiencies up to 26.1%. However, such compositional engineering route has reached the limit of the Goldschmidt tolerance factor. Here, we experimentally demonstrate a resonant perovskite solar cell that produces giant light absorption at the perovskite band edge with tiny absorption coefficients. We design multiple guide-mode resonances by momentum matching of waveguided modes and free-space light via Brillouin-zone folding, thus achieving an 18-nm band edge extension and 1.5 mA/cm2 improvement of the current. The external quantum efficiency spectrum reaches a plateau of above 93% across the spectral range of ~500 to 800 nm. This resonant nanophotonics strategy translates to a maximum EQE-integrated current of 26.0 mA/cm2 which is comparable to that of the champion single-crystal perovskite solar cell with a thickness of ~20 µm. Our findings break the ray-optics limit and open a new door to improve the efficiency of single-junction perovskite solar cells further when compositional engineering or other carrier managements are close to their limits.

6.
Adv Mater ; 34(24): e2106540, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35060205

RESUMO

This review focuses on monolithic 2-terminal perovskite-silicon tandem solar cells and discusses key scientific and technological challenges to address in view of an industrial implementation of this technology. The authors start by examining the different crystalline silicon (c-Si) technologies suitable for pairing with perovskites, followed by reviewing recent developments in the field of monolithic 2-terminal perovskite-silicon tandems. Factors limiting the power conversion efficiency of these tandem devices are then evaluated, before discussing pathways to achieve an efficiency of >32%, a value that small-scale devices will likely need to achieve to make tandems competitive. Aspects related to the upscaling of these device active areas to industry-relevant ones are reviewed, followed by a short discussion on module integration aspects. The review then focuses on stability issues, likely the most challenging task that will eventually determine the economic viability of this technology. The final part of this review discusses alternative monolithic perovskite-silicon tandem designs. Finally, key areas of research that should be addressed to bring this technology from the lab to the fab are highlighted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA