Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomed Microdevices ; 26(3): 30, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913209

RESUMO

Flexible electronics offer a versatile, rapid, cost-effective and portable solution to monitor water contamination, which poses serious threat to the environment and human health. This review paper presents a comprehensive exploration of the versatile platforms of flexible electronics in the context of heavy metal ion detection in water systems. The review overviews of the fundamental principles of heavy metal ion detection, surveys the state-of-the-art materials and fabrication techniques for flexible sensors, analyses key performance metrics and limitations, and discusses future opportunities and challenges. By highlighting recent advances in nanomaterials, polymers, wireless integration, and sustainability, this review aims to serve as an essential resource for researchers, engineers, and policy makers seeking to address the critical challenge of heavy metal contamination in water resources. The versatile promise of flexible electronics is thoroughly elucidated to inspire continued innovation in this emerging technology arena.


Assuntos
Metais Pesados , Metais Pesados/análise , Água/química , Eletrônica , Poluentes Químicos da Água/análise , Íons/química , Íons/análise
2.
Environ Res ; 204(Pt C): 112223, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34688644

RESUMO

This study investigated a novel sodium iron chlorophyllin-H2O2 (SIC-H2O2) sludge pretreatment strategy before anaerobic digestion to enhance methane production. The efficiencies and mechanism of the proposed strategy to enhance sludge biodegradability were explored. The SIC-H2O2 pretreatment could enhance the oxidation performance for sludge floc disintegration to dissociate TB-EPS into S-EPS increased SCOD to 521.38 mg/L. The increase of solubilization and release of EPS with the pretreatment facilitate the biogas production at 702 L kg-1 VS, which was 3-folds of the control and significantly higher than other pretreatments. The result of excitation-emission matrix and parallel factor (EEM-PARAFAC) analysis showed that the SIC-H2O2 pretreatment enhanced the dissociation of TB-EPS fractions, especially the protein-like and soluble microbial by-product-like substances. Electron paramagnetic resonance (EPR) results provided evidence for homolytic catalysis H2O2 for the generation OH and the production of high-valent (Por)FeIV(O) intermediates. Synergistic effects of reactive oxygen species (OH, H2O2 and /HO2) and (Por)FeIV(O) enhanced the EPS disintegration during SIC-H2O2 pretreatment. The mixed-acid type fermentation provided continuous VFAs supply under the enrichment of Chloroflexi and Actinobacteria and multiplication Methanosaeta also promoted methane production. This research provides a feasible pretreatment strategy increase sludge biodegradability and enhance biogas production in the anaerobic digestion process.


Assuntos
Biocombustíveis , Esgotos , Anaerobiose , Biocombustíveis/análise , Reatores Biológicos , Clorofilídeos , Peróxido de Hidrogênio , Metano , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos
3.
Environ Res ; 214(Pt 3): 114032, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35952741

RESUMO

Here the role of microplastic size on dissolved organic matter, leaching compounds and microbial community during anaerobic sludge digestion was evaluated. Compared to that without the addition of polyvinyl chloride (PVC), during the 30 days' incubation, the anaerobic sludge digestion by adding PVC at the size of 75 µm and the concentration of 2.4 g/g volatile solids (VS) showed a 8.5% lower cumulative methane production, while a 17.9% higher cumulative methane production was noted by adding PVC at the size of 3000 µm and the concentration of 2.4 g/g VS. A long-term fed-batch laboratory-scale fermenter test for 147 days further testified, that higher removal efficiencies of total solids, volatile solids, and total chemical oxygen demand, and higher methane production were noted by adding PVC (2.4 g/g VS, 3000 µm) into the fermenter. More interestingly, higher concentrations of proteins, polysaccharides, volatile fatty acids, and soluble microbial by-products component were noted in the liquid phase of sludge drawn from the fermenter added with PVC since the biomass therein showed higher efficiencies of solubilization, hydrolysis, acidification, and methanogenesis. Moreover, as identified from the fermenter added with PVC, dibutyl phthalate (DBP) was the most predominant leaching phthalates compound, although the biomass therein showed a 93.4% anaerobic biodegradability of DBP. The leaching of DBP drove the predominance of microbial community towards Synergistota and Methanosaeta. More irregular elliptical shallow dimples were noted on the PVC surface after 147 days' incubation, accompanied with abundances of Proteobacteria, Actinobacteriota, Chloroflexi, Methanosaeta and Methanobacterium. The results from this study showed that the size of microplastic was a crucial factor in evaluating its impact on anaerobic sludge digestion.


Assuntos
Microbiota , Esgotos , Anaerobiose , Reatores Biológicos , Digestão , Matéria Orgânica Dissolvida , Metano , Microplásticos , Plásticos , Cloreto de Polivinila , Esgotos/química
4.
Environ Res ; 203: 111825, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364865

RESUMO

Deep dewatering of sewage sludge pretreated with advanced oxidation processes (AOPs) is a strategy for efficient sludge reduction and subsequent disposal. The pretreatment and dewatering performance of sludge conditioned with three types of AOPs (Fe2+/H2O2, Fe2+/Ca(ClO)2, and Fe2+/Na2S2O8), compared with sludge conditioned with traditional conditioner (Fe3+/CaO), were investigated in both bench and pilot-scale tests. All of those conditioner systems could reduce the water content of dewatered sludge cake to below 60 wt% in bench-scale (about 16 kg raw sludge per round) and pilot-scale (approximate 800 kg raw sludge per round) diaphragm filter press dewatering. Compared with raw sludge, the deep-dewatering filtrate after different conditioning and dewatering processes had higher ammonia nitrogen (NH4+-N) and chemical oxygen demand (COD) contents due to the degradation of organic matter, and much lower total phosphorus (TP) content due to the formation of iron phosphate precipitate. A better biodegradability (i.e. higher BOD5/COD ratio) was found in the deep-dewatering filtrate of sludge conditioned with Fe2+/H2O2 (25.2 %) and Fe2+/Ca(ClO)2 (17.4 %). Most of the heavy metals (Cr, Cu, Ni, and Pb) (>79 wt%) have remained in the dewatered sludge cake, and most of the Cl element (>90 wt%) in the sludge pretreated by Fe2+/Ca(ClO)2 and Fe3+/CaO was kept in the filtrate, rather than the dewatered sludge cake. Based on the pilot-scale experimental results, if all the filtrate in the deep-dewatering process returned to the influent of WWTP, the loading ratios of TP, NH4+-N, COD in the four conditioner systems were less than 3 wt%. The above results proved that the AOPs conditioned sludge could achieve deep-dewatering in pilot-scale and the direct recirculation of deep-dewatering filtrate to the influent of wastewater treatment plant was feasible.


Assuntos
Esgotos , Purificação da Água , Peróxido de Hidrogênio , Eliminação de Resíduos Líquidos , Água
5.
Int J Mol Sci ; 23(12)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35743005

RESUMO

Acylglycerophosphate acyltransferases (AGPATs) are the rate-limiting enzymes for the de novo pathway of triacylglycerols (TAG) synthesis. Although AGPATs have been extensively explored by evolution, expression and functional studies, little is known on functional characterization of how many members of the AGPAT family are involved in TAG synthesis and their impact on the cell proliferation and apoptosis. Here, 13 AGPAT genes in buffalo were identified, of which 12 AGPAT gene pairs were orthologous between buffalo and cattle. Comparative transcriptomic analysis and real-time quantitative reverse transcription PCR (qRT-PCR) further showed that both AGPAT1 and AGPAT6 were highly expressed in milk samples of buffalo and cattle during lactation. Knockdown of AGPAT1 or AGPAT6 significantly decreased the TAG content of buffalo mammary epithelial cells (BuMECs) and bovine mammary epithelial cells (BoMECs) by regulating lipogenic gene expression (p < 0.05). Knockdown of AGPAT1 or AGPAT6 inhibited proliferation and apoptosis of BuMECs through the expression of marker genes associated with the proliferation and apoptosis (p < 0.05). Our data confirmed that both AGPAT1 and AGPAT6 could regulate TAG synthesis and growth of mammary epithelial cells in buffalo. These findings will have important implications for understanding the role of the AGPAT gene in buffalo milk performance.


Assuntos
Aciltransferases , Búfalos , Animais , Bovinos , Feminino , Aciltransferases/genética , Aciltransferases/metabolismo , Búfalos/genética , Búfalos/metabolismo , Células Epiteliais/metabolismo , Lactação/genética , Glândulas Mamárias Animais/metabolismo , Leite/metabolismo , Triglicerídeos/metabolismo
6.
Environ Res ; 196: 110328, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33075357

RESUMO

How to efficiently improve waste activated sludge (WAS) dewaterability is a common challenge in WAS treatment and management throughout world. The interaction energy of sludge flocs is of great importance for sludge dewaterability. In this study, the relationship among the repulsive force of sludge flocs, hydrophilic/hydrophobic characteristics of sludge flocs, and sludge dewaterability have been quantitatively and qualitatively investigated based on extended Derjaguin-Landau-Verwey-Overbeek theory for the first time. The energy barrier of sludge flocs has good correlations with sludge dewaterability (p < 0.05). Trivalent cations (Al3+ and Fe3+) and Fenton's reagent reduced the interfacial free energy (ΔG) from 9.4 mJ/m2 of raw sludge to -34.2 (Al3+), -60.5 (Fe3+), and -63.2 (Fenton) mJ/m2, respectively, indicating that the hydrophilic surfaces of the sludge flocs converted to hydrophobic (△G < 0), and decreasing Lewis acid-base interaction energy (WAB) of sludge flocs. In addition, most of the trivalent cations (Al3+ and Fe3+) were attached to sludge flocs, leading to neutralize negative charges and mitigate electrostatic interaction energy (WR) of sludge flocs. The reduction of WAB and WR eliminated energy barrier of sludge flocs and repulsive force between sludge flocs. In comparison, monovalent (Na+ and K+) and bivalent (Ca2+ and Mn2+) cations cannot completely change the hydrophilic surface characteristic and negative charge of sludge flocs. The existed energy barrier prevented sludge flocs to agglomerate with each other, thus resulting in a worse dewaterability. This study illustrated that reducing interaction energy of sludge flocs played a critical role to improve sludge dewaterability.


Assuntos
Esgotos , Água , Cátions , Interações Hidrofóbicas e Hidrofílicas , Eliminação de Resíduos Líquidos
7.
Environ Res ; 191: 110050, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32828760

RESUMO

A novel method to enhance sludge dewaterability with ammonium sulfate ((NH4)2SO4) was proposed, and the potential reuse of dewatered sludge cake and filtrate as nitrogen fertilizers was evaluated. Compared with raw sludge, 87.91% reduction of capillary suction time (CST) and 88.02% reduction of specific resistance to filtration (SRF) after adding 80% (m/m) (NH4)2SO4 were achieved, with 38.49% of protein precipitated simultaneously. The (NH4)2SO4 dose destroyed cell membrane, resulting in the release of intracellular water by converting bound water into free water, thus enhancing sludge dewaterability. In the solid phase, the content of protein-N increased, and larger protein aggregates were formed. The (NH4)2SO4 dose destroyed the hydration shell, making proteins to exhibit hydrophobic interactions, and to be aggregated, and precipitated from the liquid phase. When incubated Pennisetum alopecuroides L. with the dewatered sludge cake and filtrate after dewatering and conditioning with (NH4)2SO4, the germination rate of grass seed and shoot lengths both increased while compared with those incubated with dewatered sludge cake and filtrate of the raw sludge. This study might provide insights into sustainable sludge treatment by integrating sludge dewatering and the potential reuse of dewatered sludge cake and filtrate as nitrogen fertilizer via treatment with (NH4)2SO4.


Assuntos
Fertilizantes , Esgotos , Sulfato de Amônio , Filtração , Nitrogênio , Eliminação de Resíduos Líquidos , Água
8.
Environ Res ; 181: 108906, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31740039

RESUMO

MFC toxicity sensor has major hindrances that limit its practical application, such as the poor concentration-response relationship and inferior recovery capability after high toxicity shock. Till now, the direct influence of intrinsic properties on the performance of MFC toxicity sensor has not been well understood. Quorum sensing (QS) is a cell-to-cell communication strategy that indirectly affects the intrinsic properties of electroactive biofilms. In this work, commercially available QS autoinducers (AHLs) were applied to MFC toxicity sensor to manipulate anode biofilm for better sensing performance. The results showed that the addition of AHLs (C6-HSL, 3-OXO-C12-HSL) led to higher sensing linearity to a wider range of Pb2+. The voltage of MFC sensors with AHLs addition fully recovered even after 10 mg/L Cu2+ shock, indicating an enhanced recovery capability of MFC toxicity sensor. It was found that higher live/dead cells ratio and increased exoelectrogen Geobacter abundance were responsible for the superior sensing linearity and recovery capability of MFC toxicity sensor. Our work presented a novel and effective way to advance the process of MFC toxicity sensor application from the perspective of EABs.


Assuntos
Fontes de Energia Bioelétrica , Percepção de Quorum , Biofilmes , Eletrodos
9.
Food Technol Biotechnol ; 58(3): 295-302, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33281485

RESUMO

RESEARCH BACKGROUND: Depression has become a global threat to human health. In order to solve it, researchers have conducted multi-faceted studies including diet. Many food-derived bioactive substances have shown antidepressant effects. However, there are few studies on the design of industrialized food with antidepressant effect. This study aims to evaluate the antidepressant effect of a functional beverage made from several ingredients with potential antidepressant function and investigate its antidepressant mechanisms. EXPERIMENTAL APPROACH: The beverage consists of peppermint oil, active peptides derived from bovine milk casein and Acanthopanax senticosus extract (ASE) whose active ingredient is eleutheroside. Different amounts of ASE were evaluated to determine the optimal concentration of eleutheroside in this functional beverage to deliver the best antidepressant effect through extensive behavioral testing, including preliminary acute stress experiments and further chronic unpredictable mild stress test. RESULTS AND CONCLUSIONS: The results demonstrated that the beverage with 15 mg/kg of eleutheroside could significantly reduce the mice's immobility time of tail suspension test and forced swimming test, recover mice's sucrose preference and behavior changes in the open field test, improve the contents of dopamine, norepinephrine, 5-hydroxytryptamine and the activity of superoxide dismutase and reduce the content of malondialdehyde in mice's brains, which indicated that the improvement of monoamine neurotransmitter systems and antioxidation was one potential mechanism of antidepressant action. NOVELTY AND SCIENTIFIC CONTRIBUTION: This study provides a design of antidepressant functional beverage and an efficient way for the prevention and treatment of depression.

10.
Environ Sci Technol ; 53(5): 2748-2757, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30698959

RESUMO

The recovery of copper (Cu0) from waste printed circuit boards (WPCBs) is a great challenge as a result of its heterogeneous structural properties, with a mixture of metals, epoxy resin, and fiberglass. In this study, a three-step sequential process, including mechanochemical processing, water leaching, and recrystallization, for Cu0 recovery from WPCB powder is reported. Potassium persulfate (K2S2O8), instead of acid/alkali reagents, was employed as the sole reagent in the cupric sulfate (CuSO4) regeneration process. Complete oxidation of Cu0 in the WPCBs to copper oxide (CuO) and CuSO4 was first achieved during mechanochemical processing with K2S2O8 as the solid oxidant, and the K2S2O8 was simultaneously converted to sulfate compounds [K3H(SO4)2] via a solid-solid reaction with epoxy resin (C nH mO y) as the hydrogen donator under mechanical force. The rapid leaching of Cu species in the forms of CuO and CuSO4 was therefore easily realized with pure water as a nontoxic leaching reagent. The kinetics of the leaching process of Cu species was confirmed to follow the shrinking nucleus model controlled by solid-film diffusion. Finally, CuSO4·5H2O was successfully separated by cooling crystallization of the hot saturated solution of sulfate salt [K2Cu(SO4)2·6H2O]. An efficient conversion of Cu0 to CuSO4·5H2O product, for WPCB recycling, was therefore established.


Assuntos
Cobre , Resíduo Eletrônico , Ácidos , Metais , Reciclagem
11.
Mikrochim Acta ; 186(12): 776, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31728707

RESUMO

A delaminated MXene-bismuth (Bi@d-Ti3C2) nanocomposite was synthesized for the construction of a microgrid electrochemical sensor via mechanical milling. The Bi@d-Ti3C2 nanocomposite was synthesized by accumulation of Bi(III) on the surface of delaminated Ti3C2 nanosheets through electrostatic attraction and subsequent in-situ growth of bismuth nanorods. Under optimized experimental conditions, the sensor exhibits (a) linear responses to Pb(II), Cd(II) and Zn(II) in the concentration range from 1 to 20 µg L-1, (b) well separated peak potentials at -0.54 V, -0.76 V and - 1.15 V vs. Ag/AgCl, (c) sensitivities of 0.98, 0.84 and 0.60 µA L µg-1, and (d) detection limits of 0.2, 0.4 and 0.5 µg L-1, respectively. This performance is attributed to the uniform dispersion of Bi nanorods on electrically conductive delaminated Ti3C2 MXene, and to the enhanced diffusion due to the microgrid structure. Graphical abstractSchematic representation of a microgrid sensor based on delaminated MXene-bismuth (Bi@d-Ti3C2) nanocomposite for the simultaneous electrochemical determination of Pb(II), Cd(II) and Zn(II).

12.
Environ Sci Technol ; 52(4): 2235-2241, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29338210

RESUMO

Spent lead-acid battery recycling by using conventional technologies is usually accompanied by releases of lead-containing wastewater as well as emissions of sulfur oxides and lead particulates that may potentially cause secondary pollution. This study developed a vacuum chlorinating process for simultaneous sulfur fixation and high-purity lead chloride (PbCl2) recovery from spent lead paste by using calcium chloride (CaCl2) and silicon dioxide (SiO2) as reagents. The process train includes pretreatment, simultaneous PbCl2 production and sulfur fixation, and PbCl2 volatilization. The pretreatment eliminated chlorine emission from direct chlorinating reaction of PbO2 in the initial S-paste (PbSO4/PbO2/PbO/Pb). During the subsequent PbCl2 production and sulfur fixation step, lead compounds in the P-paste (PbSO4/PbO) was converted to volatile PbCl2, and sulfur was simultaneously fixed to the solid residues in the form of CaSO4 to eliminate the emission of sulfur oxides. The final step, PbCl2 volatilization under vacuum, is a physical phase-transformation process of ionic crystals, following a zeroth-order kinetic model. A cost estimate indicates a profit of USD $ 8.50/kg PbCl2. This process offers a novel green lead recovery alternative for spent lead-acid batteries with environmental and economic benefits.


Assuntos
Chumbo , Dióxido de Silício , Fontes de Energia Elétrica , Enxofre , Vácuo
13.
Water Sci Technol ; 78(9): 1956-1965, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30566099

RESUMO

A liquid-gas two-phase computational fluid dynamics (CFD) model was developed to simulate flow field and gas hold-up in a pilot-scale oxidation ditch (OD). The volume of fluid (VOF) model and the mass flow inlet boundary condition for gas injection were introduced in this model. The simulated values of the flow velocities and the gas hold-up were verified by experimental measurements in the pilot-scale OD. The results showed that the gas hold-up at test-site 3, immediately downstream of the surface aerator, was the highest among all three test-sites. Most of the gas existed in the upper portion of the ditch and was close to the inner side of the channel. Based on the liquid-gas two-phase CFD model, three operating conditions with different setting height ratios of the submerged impellers were simulated. The simulated results suggested that the setting heights of the submerged impellers have significant impacts on the flow velocity distribution. Lowering the setting height could increase the flow velocity in the pilot-scale OD. An optimal setting height ratio of 0.273 was proposed, which would be beneficial for minimizing sludge sedimentation, especially near the inner side of the curve bend.


Assuntos
Hidrodinâmica , Modelos Químicos , Eliminação de Resíduos Líquidos/métodos , Simulação por Computador , Oxirredução , Esgotos
14.
Chemosphere ; 349: 140847, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043614

RESUMO

Nonradical species with great resistance to interference have shown great advantages in complex wastewater treatment. Herein, a novel system constructed by biodegradable tetrakis-(4-carboxyphenyl)-porphyrinatoiron(III) (FeIII-TCPP) and peroxymonosulfate (PMS) was proposed for facile decontamination. Nonradical pathway is observed in FeIII-TCPP/PMS, where 1O2 and high-valent iron-oxo species play dominant roles. The genres and valence of high-valent iron-oxo species, including iron(IV)-oxo porphyrin radical-cationic species [OFeIV-TCPP•+] and iron(IV)-hydroxide species [FeIV-TCPP(OH)], are ascertained, along with their generation mechanism. The axial ligand on the iron axial site affects the ground spin state of FeIII-TCPP, further influencing the thermodynamic reaction pathway of active species. With trace catalyst in micromoles, FeIII-TCPP exhibits high efficiency by degrading bisphenol S (BPS) completely within 5 min, while Co2+/PMS can only achieve a maximum of 26.2% under identical condition. Beneficial from nonradical pathways, FeIII-TCPP/PMS demonstrates a wide pH range of 3-10 and exhibits minimal sensitivity to interference of concomitant materials. BPS is primarily eliminated through ß-scission and hydroxylation. Specifically, 1O2 electrophilically attacks the C-S bond of BPS, while high-valent iron-oxo species interacts with BPS through an oxygen-bound mechanism. This study provides novel insights into efficient activation of PMS by iron porphyrin, enabling the removal of refractory pollutants through nonradical pathway.


Assuntos
Poluentes Ambientais , Porfirinas , Compostos Férricos/química , Peróxidos/química , Ferro , Oxigênio
15.
J Hazard Mater ; 463: 132957, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-37948783

RESUMO

The effects of co-exposure to aged submicron particles (aSMPs) and Cd as model contaminants on rice leaves via the foliar route were investigated. Thirty-day-old rice seedlings grown in soil were exposed to Cd (nitrate) through foliar spraying at concentrations of 1, 10, 50, 100, and 500 µM, with or without aSMP at a rate of 30 µg d-1. It was observed that Cd translocated from leaves to roots via stems even without co-exposure to SMP. Co-exposure can reduce cadmium levels in leaves. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis confirmed a significant reduction (29.3 - 77.9%) in Cadmium accumulation in the leaves of rice plants during co-exposure. Exposure to Cd resulted in physiological, transcriptomic, and metabolomic changes in rice leaves, disrupting 28 metabolism pathways, and impacting crop yield and quality. Exposure to both Cd and aSMPs can interfere with the Cd distribution in plants. Rice leaves exposed solely to Cd exhibit higher toxicity and Cd accumulation, compared to those co-exposed to Cd and aSMPs. The accumulation of Cd in plant leaves is enhanced with aSMPs, which may lead to more pronounced gene expression regulation and changes in metabolic pathways, compared to Cd exposure. Our study found that the independent Cd exposure group had higher Cd accumulation and toxicity in rice leaves compared to the combined exposure of Cd and aSMPs. We hypothesize that aged negatively charged SMPs can capture Cd and reduce its exposure in the free state while jointly inhibiting Cd-induced oxidative and chloroplast damage, thereby reducing the potential risk of Cd exposure in rice plants.


Assuntos
Oryza , Poluentes do Solo , Cádmio/metabolismo , Oryza/metabolismo , Plásticos/análise , Poluentes do Solo/metabolismo , Folhas de Planta/metabolismo , Qualidade dos Alimentos , Solo
16.
Front Neurosci ; 18: 1349059, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560046

RESUMO

Introduction: Acupuncture analgesia (AA) is widely used in clinical practice. The autonomic nervous system (ANS) may be an important pathway for acupuncture signal transduction. However, real-time changes in autonomic function during AA and the effect of "needle sensation" remain unclear. Methods: We established a human pain model in healthy adults and randomly assigned 128 participants to the model, sham acupuncture, and acupuncture groups in a 1:1:2 ratio. Heart rate variability (HRV), including total power (TP), low-frequency power (LF), high-frequency power (HF), ratio of LF to HF (LF/HF), standard deviation of the normal-normal intervals (SDNN), and root mean square of successive interval differences (RMSSD), were used to assess autonomic function. The visual analog scale (VAS) and efficiency were used to assess the analgesic effect of acupuncture. The Massachusetts General Hospital acupuncture sensation scale (MASS) was used to indicate the intensity of the needle sensation. Anxiety levels were also measured. Finally, the correlation of MASS with HRV, VAS, and anxiety levels was analyzed. Results: VAS decreased after 10 min of needling and 5 min after needle withdrawal in the acupuncture group compared with those in the model group (p = 0.038, p = 0.020). The efficacy rates were 82.0, 50.0, and 61.3% in the acupuncture, model, and sham groups, respectively. These represent significant differences between the acupuncture group and the model and sham acupuncture groups (p < 0.001 in each case). No differences were observed between the model and sham acupuncture groups. HF, TP, SDNN, and RMSSD were all increased in the acupuncture group compared with those in the model group (p = 0.045, p = 0.041, p = 0.002, p = 0.006, respectively). No differences were observed in the sham acupuncture group compared to the model group (p = 0.632, p = 0.542, p = 0.093, p = 0.222, respectively). The LF and LF/HF did not differ among all three groups. A positive correlation was observed between MASS and RMSSD2, LF2, RMSSD4, TP4, VAS5, and anxiety levels. Conclusion: AA was associated with enhanced vagal activity. The intensity of needle sensation was positively correlated with vagal and sympathetic nerve activities. Acupuncture is an effective means of regulating autonomic function, and needle sensation may be an important modulator.

17.
Hortic Res ; 11(6): uhae104, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38883328

RESUMO

Brassinazole resistant 1 (BZR1), a brassinosteroid (BR) signaling component, plays a pivotal role in regulating numerous specific developmental processes. Our study demonstrated that exogenous treatment with 2,4-epibrassinolide (EBR) significantly enhanced the accumulation of carotenoids and chlorophylls in Chinese kale (Brassica oleracea var. alboglabra). The underlying mechanism was deciphered through yeast one-hybrid (Y1H) and dual-luciferase (LUC) assays, whereby BoaBZR1.1 directly interacts with the promoters of BoaCRTISO and BoaPSY2, activating their expression. This effect was further validated through overexpression of BoaBZR1.1 in Chinese kale calli and plants, both of which exhibited increased carotenoid accumulation. Additionally, qPCR analysis unveiled upregulation of carotenoid and chlorophyll biosynthetic genes in the T1 generation of BoaBZR1.1-overexpressing plants. These findings underscored the significance of BoaBZR1.1-mediated BR signaling in regulating carotenoid accumulation in Chinese kale and suggested the potential for enhancing the nutritional quality of Chinese kale through genetic engineering of BoaBZR1.1.

18.
Waste Manag ; 162: 72-82, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36948115

RESUMO

A co-pyrolysis process for non-metallic fractions (NMFs) from WPCBs with Bayer red mud (RM) is proposed to upgrade pyrolysis products in this study. High bromine fixation efficiency was realized, and higher content of lightweight pyrolysis tar was obtained. The mechanism of catalytic pyrolysis and simultaneous bromine fixation of NMFs by RM was investigated by experiments and theoretical calculations. The three inorganic components of Fe2O3, CaCO3 and Al2O3 in RM played key roles in the catalytic pyrolysis of NMFs, and their order of catalytic debromination effect was CaCO3 > Fe2O3 > Al2O3. By adding 15 wt% RM, the pyrolysis solid residue could fix 89.55 wt% bromine, compared with 35.42 wt% of NMFs without adding RM, due to the formation of FeBr2 and CaBr2 from Fe2O3 and CaCO3 in RM, respectively. Tar lightweighting was realized by reducing the energy barrier of the direct decomposition of tetrabromobisphenol A (TBBPA) in NMFs. The order of effect of the three key components on the tar lightweighting was Fe2O3 > Al2O3 > CaCO3. The content of lightweight tar in the tar obtained by catalytic pyrolysis of NMFs with 15 wt% RM was 44.29% higher than that in the tar obtained by direct pyrolysis of NMFs. This work provides a theoretical guidance for the low-cost and eco-friendly recycling of e-wastes by co-pyrolysis with RM.


Assuntos
Bromo , Pirólise
19.
Chemosphere ; 331: 138783, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37119928

RESUMO

The activation of peroxymonosulfate (PMS) by sodium ferric chlorophyllin (SFC), a natural porphyrin derivative extracted from chlorophyll-rich substances, was systematically investigated for facile degradation of bisphenol A (BPA). SFC/PMS is capable of degrading 97.5% of BPA in the first 10 min with the initial BPA concentration of 20 mg/L and pH = 3, whereas conventional Fe2+/PMS could only remove 22.6% of BPA under identical conditions. It demonstrates a prominent flexibility to a broad pH range of 3-11 with complete pollutant degradation. A remarkable tolerance toward concomitant high concentration of inorganic anions (100 mM) was also observed, among which (bi)carbonates can even accelerate the degradation. The nonradical oxidation species, including high-valent iron-oxo porphyrin species and 1O2, are identified as dominant species. Particularly, the generation and participation of 1O2 in the reaction is evidenced by experimental and theoretical methods, which is vastly different from the previous study. The specific activation mechanism is unveiled by density functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) simulations. The results shed light on effective PMS activation by iron (III) porphyrin and the proposed natural porphyrin derivative would be a promising candidate for efficient abatement of recalcitrant pollutants toward complicated aqueous media in wastewater treatment.


Assuntos
Poluentes Ambientais , Porfirinas , Oxigênio Singlete , Peróxidos/química , Ferro/química
20.
J Hazard Mater ; 444(Pt A): 130402, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36403452

RESUMO

Hemin has attracted considerable interest as an efficient catalyst recently, however, its direct application is inefficient due to severe molecular aggregation. Immobilizing hemin on various supports is a feasible approach to address this issue. In this work, a CNTs-hemin catalyst was prepared by loading hemin onto multiwalled carbon nanotubes (CNTs) through ball milling. Compared with hemin, CNTs-hemin demonstrates remarkably enhanced performance in the peroxymonosulfate system, with a 650-fold improvement of apparent rate constant, reaching 97.8% degradation of sulfathiazole in 5 min. High-valent iron-oxo porphyrin cation ((Porp)+•FeIV=O) radicals are proposed as the dominant reactive species in the CNTs-hemin/peroxymonosulfate system instead of sulfate radicals (SO4•-), hydroxyl radicals (•OH), superoxide radicals (O2•-) and singlet oxygen (1O2). More in-depth mechanisms reveal that the strong electron transfer between CNTs and hemin promotes the generation of (Porp)+•FeIV=O radicals through a heterolysis pathway. This research enriches the understanding of the catalytic mechanism of supported biomimetic catalysts for PMS activation and provides a perspective on the role of support materials for catalytic activity.


Assuntos
Nanotubos de Carbono , Porfirinas , Hemina , Sulfatiazol , Cátions , Ferro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA