Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(5): e2306220, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37727068

RESUMO

Atomic-scale interface engineering is a prominent strategy to address the large volume expansions and sluggish redox kinetics for reinforcing K-storage. Here, to accelerate charge transport and lower the activation energy, dual carbon-modified interfacial regions are synthesized with high lattice-matching degree, which is formed from a CoSe2 /FeSe2 heterostructure coated onto hollow carbon fibers. State-of-the-art characterization techniques and theoretical analysis, including ex-situ soft X-ray absorption spectroscopy, synchrotron X-ray tomography, ultrasonic transmission mapping, and density functional theory, are conducted to probe local atomic structure evolution, mechanical degradation mechanisms, and ion/electron migration pathways. The results suggest that the heterostructure composed of the same crystal system and space group can sharply regulate the redox kinetics of transition metal selenium and dual carbon-modified approach can tailor physicochemical degradation. Overall, this work presents the design of a stable heterojunction synergistic superior hollow carbon substrate, inspiring a pathway of interface engineering strategy toward high-performance electrode.

2.
Small ; : e2311740, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38412430

RESUMO

Metal oxides with conversion and alloying mechanisms are more competitive in suppressing lithium dendrites. However, it is difficult to simultaneously regulate the conversion and alloying reactions. Herein, conversion and alloying reactions are regulated by modulation of the zinc oxide bandgap and oxygen vacancies. State-of-the-art advanced characterization techniques from a microcosmic to a macrocosmic viewpoint, including neutron diffraction, synchrotron X-ray absorption spectroscopy, synchrotron X-ray microtomography, nanoindentation, and ultrasonic C-scan demonstrated the electrochemical gain benefit from plentiful oxygen vacancies and low bandgaps due to doping strategies. In addition, high mechanical strength 3D morphology and abundant mesopores assist in the uniform distribution of lithium ions. Consequently, the best-performed ZnO-2 offers impressive electrochemical properties, including symmetric Li cells with 2000 h and full cells with 81% capacity retention after 600 cycles. In addition to providing a promising strategy for improving the lithiophilicity and mechanical strength of metal oxide anodes, this work also sheds light on lithium metal batteries for practical applications.

3.
Chemistry ; 29(67): e202302236, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37705492

RESUMO

The growth of lithium dendrites and the shuttle of polysulfides in lithium metal batteries (LMBs) have hindered their development. In LMBs, the cathode and anode are separated by a separator, although this does not solve the battery's issues. The use of biomass materials is widespread for modifying the separator due to their porous structure and abundant functional groups. LMBs perform more electrochemically when lithium ions are deposited uniformly and polysulfide shuttling is reduced using biomass separators. In this review, we analyze the growth of lithium dendrite and the shuttle of polysulfide in LMBs, summarize the types of biomass separator materials and the mechanisms of action (providing mechanical barriers, promoting uniform deposition of metal ions, capturing polysulfides, shielding polysulfide). The prospect of developing new separator materials from the perspective of regulating ion transport and physical sieving efficiency as well as the application of advanced technologies such as synchrotron radiation to characterize the mechanism of action of biomass separators is also proposed.

4.
Phys Chem Chem Phys ; 25(40): 27606-27617, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37811592

RESUMO

Fe2O3 is considered a potential electrode material owing to its high theoretical capacity, low cost, and non-toxic characteristics. However, the significant volume expansion and structural degradation during charging and discharging hinder its application in potassium ion batteries. The electrochemical properties of the electrode material are primarily influenced by the diffusion efficiency of ions and the mechanics of the object. From the construction of a one dimensional structure, a three-dimensional flower-like Fe2O3 with a high specific surface and low-dimensional spherical Fe2O3 were prepared. Considering the convenience and visualization of the research, micron-scale Fe2O3 was prepared, although the larger particle size will lose part of the capacity. Notably, compared with the spherical structure, the specific capacity of the flower structure was increased by about 100%. The von Mises stress distribution on the two structures was simulated by the finite element method, revealing the mechanism of electrode failure induced by volume expansion and confirming the vital role of the multidimensional system in relieving stress concentration and improving electrochemical performance. Furthermore, synchrotron radiation soft X-ray absorption spectrum and X-ray micro-tomography revealed the phase transformation process and reaction mechanism of Fe2O3 in potassium ion batteries. The dimensional structure construction strategy reported here can provide theoretical support for modifying transition metal oxides.

5.
ACS Appl Mater Interfaces ; 16(10): 12500-12508, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38417141

RESUMO

Lithium-sulfur batteries (LSBs) are promising next-generation energy storage systems because of their high energy densities and high theoretical specific capacities. However, most catalysts in the LSBs are based on carbon materials, which can only improve the conductivity and are unable to accelerate lithium-ion transport. Therefore, it would be worthwhile to develop a catalytic electrode exhibiting both ion and electron conductivity. Herein, a triple-phase interface using lithium lanthanum titanate/carbon (LLTO/C) nanofibers to construct ion/electron co-conductive materials was used to afford enhanced adsorption of lithium polysulfides (LiPSs), high conductivity, and fast ion transport in working LSBs. The triple-phase interface accelerates the kinetics of the soluble LiPSs and promotes uniform Li2S precipitation/dissolution. Additionally, the LLTO/C nanofibers decrease the reaction barrier of the LiPSs, significantly improving the conversion of LiPSs to Li2S and promoting rapid conversion. Specifically, the LLTO promotes ion transport owing to its high ionic conductivity, and the carbon enhances the conductivity to improve the utilization rate of sulfur. Therefore, the LSBs with LLTO/C functional separators deliver stable life cycles, high rates, and good electrocatalytic activities. This strategy is greatly important for designing ion/electron conductivity and interface engineering, providing novel insight for the development of the LSBs.

6.
ACS Nano ; 16(11): 19584-19593, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36346709

RESUMO

Owing to abundant polar groups and good lithiophilicity, protein materials regain interest for application in lithium metal batteries (LMBs). Current proteins with an α-conformation for modifying lithium (Li) anodes possess typically poor mechanical properties, and there is therefore a significant need for advanced protein materials. Herein, a lysozyme-modified layer is coated onto the poly(vinylidene fluoride) electrospun mat for high mechanical strength and uniform Li-ion flux. The lysozyme membrane can regulate Li+ deposition behavior due to complete ß-sheet configuration, high lithiophilicity sulfhydryl groups, and columnar nanopores. As a result, the lysozyme-modified Li metal anode exhibits a high stability performance of Li-Li symmetric cells (2800 h) and Li-LiFePO4 full cell (1450 cycles). Our strategy pushes the protein with ß-sheet configuration toward the applications of next-generation LMBs.


Assuntos
Lítio , Muramidase , Peptídeos beta-Amiloides
7.
J Colloid Interface Sci ; 605: 472-482, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34340034

RESUMO

Molybdenum disulfide (MoS2) has possession of a layered structure and high theoretical capacity, which is a candidate anode material for sodium ion batteries. However, unmodified MoS2 are inflicted with a poor cycling stability and an inferior rate capability upon charge/discharge processes. Considering that the shape and size of anode materials play a key role in the performance of anode materials, this paper proposes a multi-level composite structure formed by the micro-nano materials based on self-assembled molybdenum disulfide (MoS2) nanoflowers, Mxene and hollow carbonized kapok fiber (CKF). The micro-nano materials can be connected to form heterojunction and agglomeration can be avoided. The load bearing of heterostructure and stress release of CKF are coordinated to form a double protection mechanism, which improves the conductivity and structural stability of hybrid materials. Based on the above advantages, it has higher specific capacity than pure MoS2, and has better rate performance (639.3, 409.5, 386.2, 372, 338, 422.8 and 434.7 mAh g-1 at the current density of 0.05, 0.1, 0.2, 0.5, 1 ,0.1 and 0.05 A·g-1, respectively). The stress-modulated strategies can provide new insights for the design and construction of transition metal sulfides heterostructures to achieve high performance sodium ion batteries.

8.
J Colloid Interface Sci ; 583: 535-543, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33035792

RESUMO

The quest for getting more efficient carbonous anodes for sodium ion batteries (NIBs) prepared by simple and economical methods continues to be an important endeavor. Herein, a plasma-controlled method is developed for preparing semi-ionic CF bonds decorating nitrogen-enriched electrospinning carbon nanofibers (NCNFs) as a free-standing anode for NIBs. The semi-ionic CF bonds are beneficial to the fast ion and electron transfer for a free-standing electrode, which remarkably improves the rate performances of NCNFs as the NIBs anodes. The optimized sample delivers a reversible capacity of 199 mA h g-1 at 0.1 A g-1 and displays excellent long-term stability with reversible specific capacity around 150 mA h g-1 over 2000 cycles at 500 mA g-1 after the rate capability test. Moreover, the presence of semi-ionic CF bonds on plasma nitrogen-enriched electrospinning carbon nanofibers surfaces can reduce the resistance of the anode, thereby showing a more stable solid electrolyte interphase SEI) after electrochemical cycles.

9.
ACS Appl Mater Interfaces ; 13(43): 51028-51038, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34672200

RESUMO

Hard carbon (HC) has attracted considerable attention in the application of sodium-ion battery (SIB) anodes, but the poor realistic capacity and low rate performance severely hinder their practical application. Herein we report a solvent mechanochemical protocol for the in situ fabrication of the HC-MXene/TiO2 electrode by functionalizing MXene to improve the electrochemical performance of the batteries. MXene (Ti3C2Tx) with abundant oxygen-containing functional groups reacts with HC particles in the ball milling process to form a Ti-O-C covalent cross-linked HC-MXene composite, in which the edge of the MXene nanosheets is in situ oxidized by air to form TiO2 nanorods, forming a regular 1D/2D MXene/TiO2 heterojunction structure. Ti-O-C covalent bonding can protect the heterojunction structures from pulverization and detachment from the current collector during charge/discharge cycles due to sodium-ion intercalation/detachment, thus improving the stability of the electrode structure. Meanwhile, the MXene/TiO2 heterojunction can form a 3D conductive network and provide more active sites. The resulting HC-MXene/TiO2 electrode exhibits superior electrode capacity (660 mAh g-1), making it a promising anode material for SIBs. This simple and efficient method for preparing MXene/TiO2 heterojunction-decorated HC provides a new perspective on the structural design of MXene and carbon material composites for SIBs.

10.
ACS Nano ; 15(9): 14697-14708, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34505761

RESUMO

Atomic-level structure engineering is an effective strategy to reduce mechanical degradation and boost ion transport kinetics for battery anodes. To address the electrode failure induced by large ionic radius of K+ ions, herein we synthesized Mn-doped ZnSe with modulated electronic structure for potassium ion batteries (PIBs). State-of-the-art analytical techniques and theoretical calculations were conducted to probe crystalline structure changes, ion/electron migration pathways, and micromechanical stresses evolution mechanisms. We demonstrate that the heterogeneous adjustment of the electronic structure can relieve the potassiumization-induced internal strain and improve the structural stability of battery anodes. Our work highlights the importance of the correlation between doping chemistry and mechanical stability, inspiring a pathway of structural engineering strategy toward a highly stable PIBs.

11.
J Colloid Interface Sci ; 592: 279-290, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33676190

RESUMO

Reasonable design of defect engineering in the electrode materials for sodium-ion batteries (SIBs) can significantly optimize battery performance. Here, compared with the traditional "foreign-doping" defects method, we report an innovative gamma-irradiation technique to introduce the "self-doping" defects in the popcorn hard carbon (HC). Considering the advantages of adsorption-intercalation-alloying sodium storage mechanism, the defect-rich HC-coated alloy structure (SnP3@HC-γ) was integrated. Due to the high energy and strong penetrability of γ-rays, the constructed "self-doping" defect engineering effectively expands the interlayer structure of HC and forms the irregular ring structure. Simultaneously, the exposed large number of coordination unsaturated sites can accelerate the reaction kinetics on the surface. Based on the synergistic effect of the SnP3@HC-γ, the composites exhibit an excellent reversible capacity of 668 mAh g-1 at 0.1 A g-1 in SIBs. Even, after 400 cycles at 1.0 A g-1, an exceptional cyclability with 88% capacity retention (430 mAh g-1) can be maintained. We envision that the γ-irradiation technology used in this research not only overturns the general perception that "self-doping" defects will reduce performance, but also provides reliable technical support for large-scale construction of high-defect, high-capacity and stable sodium-ion anode materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA