Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Clin Exp Immunol ; 177(1): 149-60, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24628444

RESUMO

Type 1 diabetes (T1DM) is a T cell-mediated autoimmune disease that selectively destroys pancreatic ß cells. The only possible cure for T1DM is to control autoimmunity against ß cell-specific antigens. We explored whether the natural compound curcumin, with anti-oxidant and anti-inflammatory activities, might down-regulate the T cell response that destroys pancreatic ß cells to improve disease outcome in autoimmune diabetes. We employed two accelerated autoimmune diabetes models: (i) cyclophosphamide (CYP) administration to non-obese diabetic (NOD) mice and (ii) adoptive transfer of diabetogenic splenocytes into NODscid mice. Curcumin treatment led to significant delay of disease onset, and in some instances prevented autoimmune diabetes by inhibiting pancreatic leucocyte infiltration and preserving insulin-expressing cells. To investigate the mechanisms of protection we studied the effect of curcumin on key immune cell populations involved in the pathogenesis of the disease. Curcumin modulates the T lymphocyte response impairing proliferation and interferon (IFN)-γ production through modulation of T-box expressed in T cells (T-bet), a key transcription factor for proinflammatory T helper type 1 (Th1) lymphocyte differentiation, both at the transcriptional and translational levels. Also, curcumin reduces nuclear factor (NF)-κB activation in T cell receptor (TCR)-stimulated NOD lymphocytes. In addition, curcumin impairs the T cell stimulatory function of dendritic cells with reduced secretion of proinflammatory cytokines and nitric oxide (NO) and low surface expression of co-stimulatory molecules, leading to an overall diminished antigen-presenting cell activity. These in-vitro effects correlated with ex-vivo analysis of cells obtained from curcumin-treated mice during the course of autoimmune diabetes. These findings reveal an effective therapeutic effect of curcumin in autoimmune diabetes by its actions on key immune cells responsible for ß cell death.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Antioxidantes/administração & dosagem , Curcumina/administração & dosagem , Células Dendríticas/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Células Th1/efeitos dos fármacos , Animais , Apresentação de Antígeno/efeitos dos fármacos , Células Cultivadas , Células Dendríticas/imunologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 1/imunologia , Modelos Animais de Doenças , Humanos , Interferon gama/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , NF-kappa B/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Células Th1/imunologia , Ativação Transcricional/efeitos dos fármacos
2.
J Neuroendocrinol ; 30(10): e12602, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29682808

RESUMO

Although stress is an adaptive physiological response to deal with adverse conditions, its occurrence during the early stages of life, such as infancy or adolescence, can induce adaptations in multiple physiological systems, including the reproductive axis, the hypothalamic-pituitary-adrenal (HPA) axis, the limbic cortex and the immune system. These early changes have consequences in adult life, as seen in the physiological and behavioural responses to stress. This review highlights the impact of several stress challenges incurred at various stages of development (perinatal, juvenile, adolescent periods) and how the developmental timing of early-life stress confers unique physiological adaptations that may persist across the lifespan. In doing so, we emphasise how intrinsic sex differences in the stress response might contribute to sex-specific vulnerabilities, the molecular processes underlying stress in the adult, and potential therapeutic interventions to mitigate the effects of early stage stress, including the novel molecular mechanism of SUMOylation as a possible key target of HPA regulation during early-life stress.


Assuntos
Sistema Hipotálamo-Hipofisário/crescimento & desenvolvimento , Sistema Hipotálamo-Hipofisário/imunologia , Sistema Hipófise-Suprarrenal/crescimento & desenvolvimento , Sistema Hipófise-Suprarrenal/imunologia , Estresse Fisiológico , Estresse Psicológico/imunologia , Estresse Psicológico/fisiopatologia , Adaptação Fisiológica , Consumo de Bebidas Alcoólicas , Animais , Etanol/administração & dosagem , Humanos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Lipopolissacarídeos/administração & dosagem , Privação Materna , Sistema Hipófise-Suprarrenal/efeitos dos fármacos
3.
Cell Death Differ ; 23(10): 1579-91, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27177020

RESUMO

FK506-binding protein 51 (FKBP51) regulates the activity of the glucocorticoid receptor (GR), and is therefore a key mediator of the biological actions of glucocorticoids. However, the understanding of the molecular mechanisms that govern its activity remains limited. Here, we uncover a novel regulatory switch for GR activity by the post-translational modification of FKBP51 with small ubiquitin-like modifier (SUMO). The major SUMO-attachment site, lysine 422, is required for FKBP51-mediated inhibition of GR activity in hippocampal neuronal cells. Importantly, impairment of SUMO conjugation to FKBP51 impacts on GR-dependent neuronal signaling and differentiation. We demonstrate that SUMO conjugation to FKBP51 is enhanced by the E3 ligase PIAS4 and by environmental stresses such as heat shock, which impact on GR-dependent transcription. SUMO conjugation to FKBP51 regulates GR hormone-binding affinity and nuclear translocation by promoting FKBP51 interaction within the GR complex. SUMOylation-deficient FKBP51 fails to interact with Hsp90 and GR thus facilitating the recruitment of the closely related protein, FKBP52, which enhances GR transcriptional activity. Moreover, we show that the modification of FKBP51 with SUMO modulates its binding to Hsp90. Our data establish SUMO conjugation as a novel regulatory mechanism in the Hsp90 cochaperone activity of FKBP51 with a functional impact on GR signaling in a neuronal context.


Assuntos
Receptores de Glucocorticoides/metabolismo , Sumoilação , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Células HEK293 , Proteínas de Choque Térmico HSP90/metabolismo , Resposta ao Choque Térmico , Humanos , Lisina/metabolismo , Camundongos Endogâmicos BALB C , Modelos Biológicos , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Transcrição Gênica
4.
Immunol Cell Biol ; 79(4): 385-94, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11488986

RESUMO

After antigenic stimulation the increase in cytokine levels constitutes a fundamental event in the host defense and mediates many processes such as inflammation, B- and T-cell growth and differentiation and activation of effector cells. Most of these processes depend on the cytokine-induced activation of transcription factors that modulate the expression of target genes. Cytokines induce a rise in glucocorticoid levels, which are instrumental in controlling immune-cytokine overreactions. Because of their anti-inflammatory and immunosuppressive actions, glucocorticoids are highly useful as therapeutic drugs in a range of diseases. The cross-talk between cytokine-induced transcription factors such as nuclear factor-kappaB, activating protein-1, cAMP responsive element binding protein and nuclear factor of activated T cells, and glucocorticoid receptors involves both genomic and non-genomic actions, and constitutes the mechanism by which glucocorticoid repressive effects on cytokine synthesis and action take place. These molecular interactions represent the key for the study of physiological compensatory actions of corticosteroids, the interactions of cytokines and glucocorticoids at their target cells, as well as the therapeutic benefits and side-effects of synthetic steroids. For this reason, we will focus on the molecular aspects of cytokine-glucocorticoid interactions, represented by the cross-coupling between cytokine-mediated transcription factors and glucocorticoid receptors.


Assuntos
Citocinas/metabolismo , Regulação da Expressão Gênica , Glucocorticoides/metabolismo , Fatores de Transcrição/metabolismo , Citocinas/imunologia , Glucocorticoides/imunologia , Humanos , Modelos Biológicos , Receptores de Glucocorticoides/metabolismo , Linfócitos T/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA