Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Med ; 123: 103394, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38852364

RESUMO

PURPOSE: To present the results of the first multi-centre real-world validation of autoplanning for whole breast irradiation after breast-sparing surgery, encompassing high complexity cases (e.g. with a boost or regional lymph nodes) and a wide range of clinical practices. METHODS: The 24 participating centers each included 10 IMRT/VMAT/Tomotherapy patients, previously treated with a manually generated plan ('manplan'). There were no restrictions regarding case complexity, planning aims, plan evaluation parameters and criteria, fractionation, treatment planning system or treatment machine/technique. In addition to dosimetric comparisons of autoplans with manplans, blinded plan scoring/ranking was conducted by a clinician from the treating center. Autoplanning was performed using a single configuration for all patients in all centres. Deliverability was verified through measurements at delivery units. RESULTS: Target dosimetry showed comparability, while reductions in OAR dose parameters were 21.4 % for heart Dmean, 16.7 % for ipsilateral lung Dmean, and 101.9 %, 45.5 %, and 35.7 % for contralateral breast D0.03cc, D5% and Dmean, respectively (all p < 0.001). Among the 240 patients included, the clinicians preferred the autoplan for 119 patients, with manplans preferred for 96 cases (p = 0.01). Per centre there were on average 5.0 ± 2.9 (1SD) patients with a preferred autoplan (range [0-10]), compared to 4.0 ± 2.7 with a preferred manplan ([0,9]). No differences were observed regarding deliverability. CONCLUSION: The automation significantly reduced the hands-on planning workload compared to manual planning, while also achieving an overall superiority. However, fine-tuning of the autoplanning configuration prior to clinical implementation may be necessary in some centres to enhance clinicians' satisfaction with the generated autoplans.


Assuntos
Automação , Neoplasias da Mama , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Neoplasias da Mama/radioterapia , Radioterapia de Intensidade Modulada/métodos , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica , Feminino , Radiometria
2.
Phys Med Biol ; 59(24): 7643-52, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25415044

RESUMO

When a carbon beam interacts with human tissues, many secondary fragments are produced into the tumor region and the surrounding healthy tissues. Therefore, in hadrontherapy precise dose calculations require Monte Carlo tools equipped with complex nuclear reaction models. To get realistic predictions, however, simulation codes must be validated against experimental results; the wider the dataset is, the more the models are finely tuned.Since no fragmentation data for tissue-equivalent materials at Fermi energies are available in literature, we measured secondary fragments produced by the interaction of a 55.6 MeV u(-1) (12)C beam with thick muscle and cortical bone targets. Three reaction models used by the Geant4 Monte Carlo code, the Binary Light Ions Cascade, the Quantum Molecular Dynamic and the Liege Intranuclear Cascade, have been benchmarked against the collected data. In this work we present the experimental results and we discuss the predictive power of the above mentioned models.


Assuntos
Carbono/química , Simulação por Computador , Radioterapia com Íons Pesados/métodos , Modelos Teóricos , Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Humanos , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA