Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 561(1): 240-7, 1979 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-420851

RESUMO

8-Methyladenosine 3'-monophosphate dihydrate was synthesized and crystallized in the monoclinic space group P21 with the unit cell dimensions: a = 9.095(2) A, b = 16.750(3) A, c = 5.405(2) A and beta = 97.61(3) degrees. The structure was determined by the application of the heavy atom method and refined to give a final R factor of 0.047. The pertinent conformations are as follows: the syn conformation about the glycosyl bond (chiCN = 216.8 degrees), the C(2')-endo sugar puckering with the displacement of 0.55 A; and the gauche-gauche conformation about the C(4')-C(5') bond capable of forming an intramolecular hydrogen bonding between N(3) of adenine base and O(5') of the hydroxymethylene group on the ribose. The molecule exists in the zwitterionic form with the N(1) of the adenine base protonated by a phosphate proton and is stabilized by three-dimensional networks of hydrogen bonding through the crystalline water molecules or directly between the adjacent nucleotide molecules; no base stacking was observed.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Cristalografia , Modelos Moleculares , Conformação Molecular , Difração de Raios X
2.
Biochemistry ; 24(19): 5033-9, 1985 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-4074676

RESUMO

The ribopolynucleotide poly(2-amino-8-methyladenylic acid), (r2NH2(8)MeA)n, has been synthesized, and its physical and chemical properties have been examined. The study reveals competing effects on these properties of the 2-NH2 and 8-Me substituents. In marked contrast to the analogous (r8MeA)n, the new polymer readily interacts to form double helixes with complementary pyrimidine polynucleotides. Triple helixes are not formed. The 8-Me group is strongly destabilizing for helix formation (delta Tm approximately 65 degrees C), presumably by favoring a syn conformation, which blocks heteroduplex formation with ribohomopolymers. The 2-NH2 substituent stabilizes helixes in the ribo series by about 30 degrees C in Tm by forming a third interbase hydrogen bond. We suggest that the free energy from the 2-NH2 interaction drives the syn-anti equilibrium to the purine polymer to the anti form present in the double helix. CD spectra of the homopolymers (r2NH2A)n and (r2NH2(8)MeA)n are completely different, reflecting major differences of conformation. The double helixes formed by these polymers with (rT)n and (rBrU)n, on the other hand, have closely similar CD spectra, supporting our proposal of a major change in conformation of (2NH2(8)MeA)n on going from single strand to double helix.


Assuntos
Poli A/síntese química , Dicroísmo Circular , Estabilidade de Medicamentos , Ligação de Hidrogênio , Indicadores e Reagentes , Cinética , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Espectrofotometria Ultravioleta , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA