Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Analyst ; 146(12): 3834-3840, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-33913955

RESUMO

We prepared fine grid patterns on a glass substrate through photolithography of photoresists; we filled photoresist grids with liquid crystals (LCs) to construct LC-based sensors. Scanning electron microscopy images revealed that the photoresist grids were flat, smooth, and 3.0-8.0 µm thick. In contrast to conventional LC-based sensors, in which LCs are filled in metal grids placed on glass substrates, our results proved that LC-based sensors constructed using photoresist grids exhibited a larger signal contrast ratio, better signal stability in aqueous solutions and lower limit of detection for mercuric ions. All these characteristics enhanced the performance of the LC-based sensors.

2.
Adv Mater ; 27(7): 1217-22, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25504521

RESUMO

Transparent organic upconversion devices are shown in a night-vision demonstration of a real object under near-infrared (NIR) illumination in the dark. An extraordinarily high current gain - reflecting the on-off switching effect - greater than 15 000 at a driving voltage of 3 V is demonstrated, indicating the high sensitivity to NIR light and potential of using the proposed upconverter in practical applications. A maximum luminance exceeding 1500 cd m(-2) at 7 V is achieved. Unlike previous studies, where 2D aperture projection is reported, the current study shows 3D images of real objects under NIR illumination in the dark.

3.
Sci Rep ; 5: 10384, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25999238

RESUMO

Time-of-flight (TOF) measurements typically require a sample thickness of several micrometers for determining the carrier mobility, thus rendering the applicability inefficient and unreliable because the sample thicknesses are orders of magnitude higher than those in real optoelectronic devices. Here, we use subphthalocyanine (SubPc):C70 as a charge-generation layer (CGL) in the TOF measurement and a commonly hole-transporting layer, N,N'-diphenyl-N,N'-bis(1,1'-biphenyl)-4,4'-diamine (NPB), as a standard material under test. When the NPB thickness is reduced from 2 to 0.3 µm and with a thin 10-nm CGL, the hole transient signal still shows non-dispersive properties under various applied fields, and thus the hole mobility is determined accordingly. Only 1-µm NPB is required for determining the electron mobility by using the proposed CGL. Both the thicknesses are the thinnest value reported to data. In addition, the flexibility of fabrication process of small molecules can deposit the proposed CGL underneath and atop the material under test. Therefore, this technique is applicable to small-molecule and polymeric materials. We also propose a new approach to design the TOF sample using an optical simulation. These results strongly demonstrate that the proposed technique is valuable tool in determining the carrier mobility and may spur additional research in this field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA