Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Cell Mol Life Sci ; 81(1): 360, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158700

RESUMO

Iron deficiency is a prevalent nutritional deficit associated with organ damage and dysfunction. Recent research increasingly associates iron deficiency with bone metabolism dysfunction, although the precise underlying mechanisms remain unclear. Some studies have proposed that iron-dependent methylation-erasing enzyme activity regulates cell proliferation and differentiation under physiological or pathological conditions. However, it remains uncertain whether iron deficiency inhibits the activation of quiescent mesenchymal stem cells (MSCs) by affecting histone demethylase activity. In our study, we identified KDM4D as a key player in the activation of quiescent MSCs. Under conditions of iron deficiency, the H3K9me3 demethylase activity of KDM4D significantly decreased. This alteration resulted in increased heterochromatin with H3K9me3 near the PIK3R3 promoter, suppressing PIK3R3 expression and subsequently inhibiting the activation of quiescent MSCs via the PI3K-Akt-Foxo1 pathway. Iron-deficient mice displayed significantly impaired bone marrow MSCs activation and decreased bone mass compared to normal mice. Modulating the PI3K-Akt-Foxo1 pathway could reverse iron deficiency-induced bone loss.


Assuntos
Proteína Forkhead Box O1 , Ferro , Histona Desmetilases com o Domínio Jumonji , Células-Tronco Mesenquimais , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Ferro/metabolismo , Camundongos Endogâmicos C57BL , Proliferação de Células , Diferenciação Celular , Masculino , Deficiências de Ferro , Humanos
2.
Opt Express ; 32(11): 19655-19664, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859095

RESUMO

A cost-effective method to achieve a 2-3 µm wavelength light source on silicon represents a major challenge. In this study, we have developed a novel approach that combines an epitaxial growth and the ion-slicing technique. A 2.1 µm wavelength laser on a wafer-scale heterogeneous integrated InP/SiO2/Si (InPOI) substrate fabricated by ion-slicing technique was achieved by epitaxial growth. The performance of the lasers on the InPOI are comparable with the InP, where the threshold current density (Jth) was 1.3 kA/cm2 at 283 K when operated under continuous wave (CW) mode. The high thermal conductivity of Si resulted in improved high-temperature laser performance on the InPOI. The proposed method offers a novel means of integrating an on-chip light source.

3.
Hum Mol Genet ; 30(3-4): 277-293, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33355648

RESUMO

Ankylosing spondylitis (AS) is a rheumatic disease with pathological osteogenesis that causes bony ankylosis and even deformity over time. Mesenchymal stem cells (MSCs) are multipotent stem cells that are the main source of osteoblasts. We previously demonstrated that enhanced osteogenic differentiation of MSCs from AS patients (ASMSCs) is related to pathological osteogenesis in AS. However, the more concrete mechanism needs further exploration. Super enhancers (SEs) are dense clusters of stitched enhancers that control cell identity determination and disease development. Single-nucleotide polymorphisms (SNPs) regulate the formation and interaction of SEs and denote genes accounting for AS susceptibility. Via integrative analysis of multiomic data, including histone 3 lysine 27 acetylation (H3K27ac), chromatin immunoprecipitation sequencing (ChIP-seq), SNPs and RNA sequencing (RNA-seq) data, we discovered a transcription network mediated by AS SNP-adjacent SEs (SASEs) in ASMSCs and identified key genes, such as Toll-like receptor 4 (TLR4), interleukin 18 receptor 1 (IL18R1), insulin-like growth factor binding protein 4 (IGFBP4), transportin 1 (TNPO1) and proprotein convertase subtilisin/kexin type 5 (PCSK5), which are pivotal in osteogenesis and AS pathogenesis. The SASE-regulated network modulates the enhanced osteogenic differentiation of ASMSCs by synergistically activating the PI3K-Akt, NF-kappaB and Hippo signaling pathways. Our results emphasize the crucial role of the SASE-regulated network in pathological osteogenesis in AS, and the preferential inhibition of ASMSC osteogenic differentiation by JQ1 indicates that SEs may be attractive targets in future treatment for new bone formation in AS.


Assuntos
Redes Reguladoras de Genes , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Transdução de Sinais , Espondilite Anquilosante/genética , Diferenciação Celular , Células Cultivadas , Sequenciamento de Cromatina por Imunoprecipitação , Humanos , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Subunidade alfa de Receptor de Interleucina-18/genética , Células-Tronco Mesenquimais/fisiologia , Polimorfismo de Nucleotídeo Único , Pró-Proteína Convertase 5/genética , Análise de Sequência de RNA , Espondilite Anquilosante/fisiopatologia , Receptor 4 Toll-Like/genética , beta Carioferinas/genética
4.
J Nanobiotechnology ; 21(1): 280, 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598147

RESUMO

Sustained inflammatory invasion leads to joint damage and progressive disability in several autoimmune rheumatic diseases. In recent decades, targeting M1 macrophage polarization has been suggested as a promising therapeutic strategy for autoimmune arthritis. P300/CBP-associated factor (PCAF) is a histone acetyltransferase (HAT) that exhibits a strong positive relationship with the proinflammatory microenvironment. However, whether PCAF mediates M1 macrophage polarization remains poorly studied, and whether targeting PCAF can protect against autoimmune arthritis in vivo remains unclear. Commonly used drugs can cause serious side effects in patients because of their extensive and nonspecific distribution in the human body. One strategy for overcoming this challenge is to develop drug nanocarriers that target the drug to desirable regions and reduce the fraction of drug that reaches undesirable targets. In this study, we demonstrated that PCAF inhibition could effectively inhibit M1 polarization and alleviate arthritis in mice with collagen-induced arthritis (CIA) via synergistic NF-κB and H3K9Ac blockade. We further designed dextran sulfate (DS)-based nanoparticles (DSNPs) carrying garcinol (a PCAF inhibitor) to specifically target M1 macrophages in inflamed joints of the CIA mouse model via SR-A-SR-A ligand interactions. Compared to free garcinol, garcinol-loaded DSNPs selectively targeted M1 macrophages in inflamed joints and significantly improved therapeutic efficacy in vivo. In summary, our study indicates that targeted PCAF inhibition with nanoparticles might be a promising strategy for treating autoimmune arthritis via M1 macrophage polarization inhibition.


Assuntos
Artrite , NF-kappa B , Humanos , Animais , Camundongos , Terpenos , Macrófagos
5.
J Biomed Sci ; 29(1): 73, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36127734

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) exhibit two bidirectional immunomodulatory abilities: proinflammatory and anti-inflammatory regulatory effects. Long noncoding RNAs (lncRNAs) have important functions in the immune system. Previously, we performed high-throughput sequencing comparing lncRNA expression profiles between MSCs cocultured with or without CD14+ monocytes and screened out a new lncRNA termed lncRNA MCP1 regulatory factor (MRF). However, the mechanism of MRF in MSCs is still unknown. METHODS: MRF expression was quantified via qRT-PCR. RNA interference and lentiviruses were used to regulate MRF expression. The immunomodulatory effects of MSCs on monocytes were evaluated via monocyte migration and macrophage polarization assays. RNA pull-down and mass spectrometry were utilized to identify downstream factors of MRF. A dual-luciferase reporter assay was applied to analyze the transcription factors regulating MRF. qRT-PCR, western blotting and ELISAs were used to assess MCP1 expression. A human monocyte adoptive transfer mouse model was applied to verify the function of MRF in vivo. RESULTS: MRF was upregulated in MSCs during coculture with CD14+ monocytes. MRF increased monocyte recruitment by upregulating the expression of monocyte chemotactic protein (MCP1). Knockdown of MRF enhanced the regulatory effect of MSCs on restraining M1 polarization and facilitating M2 polarization. Mechanistically, MRF bound to the downstream protein heterogeneous nuclear ribonucleoprotein D (HNRNPD) to upregulate MCP1 expression, and the transcription factor interferon regulatory factor 1 (IRF1) activated MRF transcription early during coculture. The human monocyte adoptive transfer model showed that MRF downregulation in MSCs inhibited monocyte chemotaxis and enhanced the effects of MSCs to inhibit M1 macrophage polarization and promote M2 polarization in vivo. CONCLUSION: We identified the new lncRNA MRF, which exhibits proinflammatory characteristics. MRF regulates the ability of MSCs to accelerate monocyte recruitment and modulate macrophage polarization through the HNRNPD-MCP1 axis and initiates the proinflammatory regulatory process in MSCs, suggesting that MRF is a potential target to improve the clinical effect of MSC-based therapy or correct MSC-related immunomodulatory dysfunction under pathological conditions.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo D , Células-Tronco Mesenquimais , RNA Longo não Codificante , Animais , Anti-Inflamatórios/farmacologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/farmacologia , Humanos , Fator Regulador 1 de Interferon/metabolismo , Fator Regulador 1 de Interferon/farmacologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Proteínas Quimioatraentes de Monócitos/metabolismo , Proteínas Quimioatraentes de Monócitos/farmacologia , Monócitos/metabolismo , RNA Longo não Codificante/metabolismo
6.
Cell Mol Biol Lett ; 27(1): 47, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705912

RESUMO

BACKGROUND: Abnormal proliferation of vascular smooth muscle cells (VSMCs) contributes to vascular remodeling diseases. Recently, it has been discovered that tRNA-derived small RNAs (tsRNAs), a new type of noncoding RNAs, are related to the proliferation and migration of VSMCs. tsRNAs regulate target gene expression through miRNA-like functions. This study aims to explore the potential of tsRNAs in human aortic smooth muscle cell (HASMC) proliferation. METHODS: High-throughput sequencing was performed to analyze the tsRNA expression profile of proliferative and quiescent HASMCs. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to validate the sequence results and subcellular distribution of AS-tDR-001370, AS-tDR-000067, AS-tDR-009512, and AS-tDR-000076. Based on the microRNA-like functions of tsRNAs, we predicted target promoters and mRNAs and constructed tsRNA-promoter and tsRNA-mRNA interaction networks. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to reveal the function of target genes. EdU incorporation assay, Western blot, and dual-luciferase reporter gene assay were utilized to detect the effects of tsRNAs on HASMC proliferation. RESULTS: Compared with quiescent HASMCs, there were 1838 differentially expressed tsRNAs in proliferative HASMCs, including 887 with increased expression (fold change > 2, p < 0.05) and 951 with decreased expression (fold change < ½, p < 0.05). AS-tDR-001370, AS-tDR-000067, AS-tDR-009512, and AS-tDR-000076 were increased in proliferative HASMCs and were mainly located in the nucleus. Bioinformatics analysis suggested that the four tsRNAs involved a variety of GO terms and pathways related to VSMC proliferation. AS-tDR-000067 promoted HASMC proliferation by suppressing p53 transcription in a promoter-targeted manner. AS-tDR-000076 accelerated HASMC proliferation by attenuating mitofusin 2 (MFN2) levels in a 3'-untranslated region (UTR)-targeted manner. CONCLUSIONS: During HASMC proliferation, the expression levels of many tsRNAs are altered. AS-tDR-000067 and AS-tDR-000076 act as new factors promoting VSMC proliferation.


Assuntos
MicroRNAs , Miócitos de Músculo Liso , Regiões 3' não Traduzidas , Aorta/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA de Transferência/farmacologia
7.
Opt Express ; 29(23): 38465-38476, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808899

RESUMO

Quantum dot (QD) laser as a light source for silicon optical integration has attracted great research attention because of the strategic vision of optical interconnection. In this paper, the communication band InAs QD ridge waveguide lasers were fabricated on GaAs-on-insulator (GaAsOI) substrate by combining ion-slicing technique and molecular beam epitaxy (MBE) growth. On the foundation of optimizing surface treatment processes, the InAs/In0.13Ga0.87As/GaAs dot-in-well (DWELL) lasers monolithically grown on a GaAsOI substrate were realized under pulsed operation at 20 °C. The static device measurements reveal comparable performance in terms of threshold current density, slope efficiency and output power between the QD lasers on GaAsOI and GaAs substrates. This work shows great potential to fabricate highly integrated light source on Si for photonic integrated circuits.

8.
Andrologia ; 53(10): e14184, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34255383

RESUMO

This study is to identify the differentially expressed miRNAs in testicular tissues of rats with hyperuricaemia-induced male infertility. We found that the hyperuricaemia model group had significantly increased serum uric acid, while significantly decreased sperm concentration and motile sperm percentage than normal group (p < .05). A total of 39 differentially expressed miRNAs were identified in the testicular tissues of hyperuricaemia rats compared with the control rats, ten of which were validated by real-time PCR. The target mRNAs of 7 differentially expressed miRNAs (miR-10b-5p, miR-26a-5p, miR-136-5p, miR-151-3p, miR-183-5p, miR-362-3p and miR-509-5p) from 3'-untranslated region binding perspective were enriched in signalling pathways of Wnt, Jak-STAT, mTOR and MAPK. The target mRNAs of 6 differentially expressed miRNAs (miR-136-5p, miR-144-3p, miR-99a-5p, miR-509-5p, miR-451-5p and miR-362-3p) from coding sequence binding perspective were enriched in signalling pathways of Calcium, Notch and MAPK. The functions of miRNAs in testicular tissues of rats with hyperuricaemia were revealed by the differentially expressed miRNAs (miR-183-5p, miR-99a-5p, miR-10b-5p, miR-151-3p, miR-26a-5p, miR-451-5p, miR-362-3p, miR-136-5p, miR-144-3p and miR-509-5p)-mRNAs interaction network. The differentially expressed miRNAs in the testicular tissues of hyperuricaemia rats might shed light on the mechanism of hyperuricaemia-induced male infertility.


Assuntos
Hiperuricemia , MicroRNAs , Animais , Perfilação da Expressão Gênica , Hiperuricemia/genética , Masculino , MicroRNAs/genética , RNA Mensageiro , Ratos , Transdução de Sinais , Testículo , Ácido Úrico
9.
J Cell Mol Med ; 24(8): 4762-4772, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32155686

RESUMO

Vascular smooth muscle cell (VSMC) proliferation is the pathological base of vascular remodelling diseases. Circular RNAs (circRNAs) are important regulators involved in various biological processes. However, the function of circRNAs in VSMC proliferation regulation remains largely unknown. This study was conducted to identify the key differentially expressed circRNAs (DEcircRNAs) and predict their functions in human aortic smooth muscle cell (HASMC) proliferation. To achieve this, DEcircRNAs between proliferative and quiescent HASMCs were detected using a microarray, followed by quantitative real-time RT-PCR validation. A DEcircRNA-miRNA-DEmRNA network was constructed, and functional annotation was performed using Gene Ontology (GO) and KEGG pathway analysis. The function of hsa_circ_0002579 in HASMC proliferation was analysed by Western blot. The functional annotation of the DEcircRNA-miRNA-DEmRNA network indicated that the four DEcircRNAs might play roles in the TGF-ß receptor signalling pathway, Ras signalling pathway, AMPK signalling pathway and Wnt signalling pathway. Twenty-seven DEcircRNAs with coding potential were screened. Hsa_circ_0002579 might be a pro-proliferation factor of HASMC. Overall, our study identified the key DEcircRNAs between proliferative and quiescent HASMCs, which might provide new important clues for exploring the functions of circRNAs in vascular remodelling diseases.


Assuntos
Aorta/crescimento & desenvolvimento , Proliferação de Células/genética , Músculo Liso Vascular/crescimento & desenvolvimento , RNA Circular/genética , Aorta/metabolismo , Técnicas de Cultura de Células , Regulação da Expressão Gênica no Desenvolvimento/genética , Ontologia Genética , Redes Reguladoras de Genes/genética , Humanos , MicroRNAs/genética , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais/genética
10.
J Cell Mol Med ; 24(14): 7884-7895, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32452100

RESUMO

Tumour-associated macrophages (TAMs), which possess M2-like characters and are derived from immature monocytes in the circulatory system, represent a predominant population of inflammatory cells in solid tumours. TAM infiltration in tumour microenvironment can be used as an important prognostic marker in many cancer types and is a potential target for cancer prevention or treatment. VEGI-251 not only is involved in the inhibition of tumour angiogenesis, but also participates in the regulation of host immunity. This work aimed to investigate the involvement of VEGI-251 in the regulation of specific antitumour immunity. We found that recombinant human VEGI-251(rhVEGI-251) efficiently mediated the elimination of TAMs in tumour tissue in mice, and induced apoptosis of purified TAMs in vitro. During this process, caspase-8 and caspase-3 were activated, leading to PARP cleavage and apoptosis. Most importantly, we further elucidated the mechanism underlying VEGI-251-triggered TAM apoptosis, which suggests that ASK1, an intermediate component of the VEGI-251, activates the JNK pathway via TRAF2 in a potentially DR3-dependent manner in the process of TAM apoptosis. Collectively, our findings provide new insights into the basic mechanisms underlying the actions of VEGI-251 that might lead to future development of antitumour therapeutic strategies using VEGI-251 to target TAMs.


Assuntos
Antineoplásicos/farmacologia , Proteínas Recombinantes/farmacologia , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/farmacologia , Macrófagos Associados a Tumor/efeitos dos fármacos , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Biomarcadores , Proteínas de Transporte/metabolismo , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Imunofenotipagem , Camundongos , Modelos Moleculares , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/patologia , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/química , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/uso terapêutico , Macrófagos Associados a Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Cell Physiol Biochem ; 50(3): 936-951, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30355941

RESUMO

BACKGROUND/AIMS: The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway plays a protective role in both acute neuronal damage and chronic neurodegeneration-related oxidative stress. Circular RNAs (circRNAs) are involved with various diseases in the central nervous system (CNS). This study aimed to identify the key circRNAs involved in Nrf2-neuroprotection against oxidative stress. METHODS: The differentially expressed circRNAs (DEcircRNAs) in the substantia nigra and corpus striatum between Nrf2 (-/-) and Nrf2 (+/+) mice were identified by microarray analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) was then used to validate the expression of selected DEcircRNAs in the substantia nigra and corpus striatum between Nrf2 (-/-) and Nrf2 (+/+) mice. Based on our previous microarray analysis of the differentially expressed mRNAs (DEmRNAs) in the substantia nigra and corpus striatum between Nrf2 (-/-) and Nrf2 (+/+) mice, the DEcircRNA-miRNA-DEmRNA interaction network was constructed. Functional annotation of DEmRNAs that shared the same binding miRNAs with DEcircRNAs was performed using gene ontology (GO) and pathway analyses. RESULTS: A total of 65 and 150 significant DEcircRNAs were obtained in the substantia nigra and corpus striatum of Nrf2 (-/-) mice, respectively, and seventeen shared DEcircRNAs were found in both these two tissues. The qRT-PCR results were generally consistent with the microarray results. The DEcircRNA-miRNA-DEmRNA interaction network and pathway analysis indicated that mmu_circRNA_34132, mmu_circRNA_017077 and mmu-circRNA-015216 might be involved with Nrf2-mediated neuroprotection against oxidative stress. Mmu_circRNA_015216 and mmu_circRNA_017077 might play roles in the Nrf2-related transcriptional misregulation and Nrf2-mediated processes of rheumatoid arthritis, respectively. In addition to these two processes, mmu_circRNA_34132 may be a potential regulator of Nrf2-mediated protection for diabetes mellitus and Nrf2-mediated defence against ROS in hearts. CONCLUSION: In conclusion, our study identified the key DEcircRNAs in the substantia nigra and corpus striatum of Nrf2 (-/-) mice, which might provide new clues for further exploring the mechanism of Nrf2-mediated neuroprotection against oxidative stress and other Nrf2-mediated processes.


Assuntos
Corpo Estriado/metabolismo , Fator 2 Relacionado a NF-E2/genética , RNA/metabolismo , Substância Negra/metabolismo , Animais , Biologia Computacional , Redes Reguladoras de Genes/genética , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2/deficiência , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo , RNA/genética , RNA Circular , RNA Mensageiro/metabolismo
12.
Nanotechnology ; 29(50): 504002, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30229744

RESUMO

Integration of high quality single crystalline InP thin film on Si substrate has potential applications in Si-based photonics and high-speed electronics. In this work, the exfoliation of a 634 nm crystalline InP layer from the bulk substrate was achieved by sequential implantation of He ions and H ions at room temperature. It was found that the sequence of He and H ion implantations has a decisive influence on the InP surface blistering and exfoliation, which only occur in the InP pre-implanted with He ions. The exfoliation efficiency first increases and then decreases as a function of H ion implantation fluence. A kinetics analysis of the thermally activated blistering process suggests that the sequential implantation of He and H ions can reduce the InP thin film splitting thermal budget dramatically. Finally, a high quality 2 inch InP-on-Si(100) hetero-integration wafer was fabricated by He and H ion sequential implantation at room temperature in combination with direct wafer bonding.

14.
RSC Adv ; 14(26): 18695-18702, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38863823

RESUMO

The coupling of the hydrogen evolution reaction (HER) and methanol oxidation reaction (MOR) to produce clean hydrogen energy with value-added chemicals has attracted substantial attention. However, achieving high selectivity for formate production in the MOR and high faradaic efficiency for H2 evolution remain significant challenges. In light of this, this study constructs an Ru/Ni(OH)2/NF catalyst on nickel foam (NF) and evaluates its electrochemical performance in the MOR and HER under alkaline conditions. The results indicate that the synergistic effect of Ni(OH)2 and Ru can promote the catalytic activity. At an overpotential of only 42 mV, the current density for the HER reaches 10 mA cm-2. Moreover, in a KOH solution containing 1 M methanol, a potential of only 1.36 V vs. RHE is required to achieve an MOR current density of 10 mA cm-2. Using Ru/Ni(OH)2/NF as a bifunctional catalyst, employed as both the anode and cathode, an MOR-coupled HER electrolysis cell can achieve a current density of 10 mA cm-2 with a voltage of only 1.45 V. Importantly, the faradaic efficiency (FE) for the hydrogen production at the cathode and formate (HCOO-) production at the anode approaches 100%. Therefore, this study holds significant practical implications for the development of methanol electro-oxidation for formate-coupled water electrolysis hydrogen production technology.

15.
Light Sci Appl ; 13(1): 71, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38462605

RESUMO

A reliable, efficient and electrically-pumped Si-based laser is considered as the main challenge to achieve the integration of all key building blocks with silicon photonics. Despite the impressive advances that have been made in developing 1.3-µm Si-based quantum dot (QD) lasers, extending the wavelength window to the widely used 1.55-µm telecommunication region remains difficult. In this study, we develop a novel photonic integration method of epitaxial growth of III-V on a wafer-scale InP-on-Si (100) (InPOS) heterogeneous substrate fabricated by the ion-cutting technique to realize integrated lasers on Si substrate. This ion-cutting plus epitaxial growth approach decouples the correlated root causes of many detrimental dislocations during heteroepitaxial growth, namely lattice and domain mismatches. Using this approach, we achieved state-of-the-art performance of the electrically-pumped, continuous-wave (CW) 1.55-µm Si-based laser with a room-temperature threshold current density of 0.65 kA/cm-2, and output power exceeding 155 mW per facet without facet coating in CW mode. CW lasing at 120 °C and pulsed lasing at over 130 °C were achieved. This generic approach is also applied to other material systems to provide better performance and more functionalities for photonics and microelectronics.

16.
J Gastroenterol ; 59(4): 342-356, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38402297

RESUMO

BACKGROUND: Non-alcoholic steatohepatitis (NASH) is a rapidly progressing chronic liver disease of global significance. However, the underlying mechanisms responsible for NASH remain unknown. Indoleamine 2,3-dioxygenase 1 (IDO1) has been recognized as essential factor in immune response and metabolic regulation. Here we aimed to investigate the functions and mechanisms of the IDO1 in macrophages on hepatic lipid deposition and iron metabolism in NASH. METHODS: The effect of IDO1 in NASH was evaluated by WT and IDO1-/- mice model fed with methionine/choline-deficient (MCD) diet in vivo. Macrophages scavenger clodronate liposomes (CL) and overexpressing of IDO1 in macrophages by virus were employed as well. Lipid deposition was assessed through pathological examination and lipid droplet staining, while iron levels were measured using an iron assay kit and western blotting. Primary hepatocytes and bone marrow-derived macrophages were treated with oleic acid/palmitic acid (OA/PA) to assess IDO1 expression via Oil Red O staining and immunofluorescence staining in vitro. RESULTS: Pathological images demonstrated that the increase of IDO1 exacerbated lipid accumulation in the livers of mice with MCD diet, while reduction of iron accumulation was observed in the liver and the serum of MCD-fed mice. Scavenging of macrophages effectively mitigated both lipid and iron accumulation. In addition, the deficiency of IDO1 in macrophages significantly mitigated lipid accumulation and iron overload in hepatic parenchymal cells. Finally, lentivirus-mediated overexpression of IDO1 in liver macrophages exacerbated hepatic steatosis and iron deposition in NASH. CONCLUSIONS: Our results demonstrated that effective inhibition of IDO1 expression in macrophages in NASH alleviated hepatic parenchymal cell lipid accumulation and iron deposition, which provided new insights for the future treatment of NASH.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Colina , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Ferro/metabolismo , Ferro/farmacologia , Metabolismo dos Lipídeos , Fígado/patologia , Macrófagos/metabolismo , Metionina , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia , Ácido Palmítico/farmacologia
17.
Phytomedicine ; 130: 155737, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38772183

RESUMO

BACKGROUND: Caenorhabditis elegans (C. elegans) has been recognized for being a useful model organism in small-molecule drug screens and drug efficacy investigation. However, there remain bottlenecks in evaluating such processes as drug uptake and distribution due to a lack of appropriate chemical tools. PURPOSE: This study aims to prepare fluorescence-labeled leonurine as an example to monitor drug uptake and distribution of small molecule in C. elegans and living cells. METHODS: FITC-conjugated leonurine (leonurine-P) was synthesized and characterized by LC/MS, NMR, UV absorption and fluorescence intensity. Leonurine-P was used to stain C. elegans and various mammalian cell lines. Different concentrations of leonurine were tested in conjunction with a competing parent molecule to determine whether leonurine-P and leonurine shared the same biological targets. Drug distribution was analyzed by imaging. Fluorometry in microplates and flow cytometry were performed for quantitative measurements of drug uptake. RESULTS: The UV absorption peak of leonurine-P was 490∼495 nm and emission peak was 520 nm. Leonurine-P specifically bound to endogenous protein targets in C. elegans and mammalian cells, which was competitively blocked by leonurine. The highest enrichment levels of leonurine-P were observed around 72 h following exposure in C. elegans. Leonurine-P can be used in a variety of cells to observe drug distribution dynamics. Flow cytometry of stained cells can be facilely carried out to quantitatively detect probe signals. CONCLUSIONS: The strategy of fluorescein-labeled drugs reported herein allows quantification of drug enrichment and visualization of drug distribution, thus illustrates a convenient approach to study phytodrugs in pharmacological contexts.


Assuntos
Caenorhabditis elegans , Ácido Gálico , Animais , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacocinética , Ácido Gálico/metabolismo , Humanos , Fluoresceína-5-Isotiocianato/análogos & derivados , Citometria de Fluxo , Fluorescência , Corantes Fluorescentes
18.
Adv Sci (Weinh) ; 11(10): e2303388, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38145956

RESUMO

Regular quiescence and activation are important for the function of bone marrow mesenchymal stem cells (BMMSC), multipotent stem cells that are widely used in the clinic due to their capabilities in tissue repair and inflammatory disease treatment. TNF-α is previously reported to regulate BMMSC functions, including multilineage differentiation and immunoregulation. The present study demonstrates that TNF-α impedes quiescence and promotes the activation of BMMSC in vitro and in vivo. Mechanistically, the TNF-α-induced expression of KAT2A promotes the succinylation of VCP at K658, which inhibits the interaction between VCP and MFN1 and thus inhibits mitophagy. Furthermore, activated BMMSC exhibits stronger fracture repair and immunoregulation functions in vivo. This study contributes to a better understanding of the mechanisms of BMMSC quiescence and activation and to improving the effectiveness of BMMSC in clinical applications.


Assuntos
Células-Tronco Mesenquimais , Fator de Necrose Tumoral alfa , Fator de Necrose Tumoral alfa/metabolismo , Mitofagia , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular
19.
Cell Chem Biol ; 31(7): 1277-1289.e7, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38382532

RESUMO

Stem cells remain quiescent in vivo and become activated in response to external stimuli. However, the mechanism regulating the quiescence-activation balance of bone-marrow-derived mesenchymal stem cells (BM-MSCs) is still unclear. Herein, we demonstrated that CYP7B1 was the common critical molecule that promoted activation and impeded quiescence of BM-MSCs under inflammatory stimulation. Mechanistically, CYP7B1 degrades 25-hydroxycholesterol (25-HC) into 7α,25-dihydroxycholesterol (7α,25-OHC), which alleviates the quiescence maintenance effect of 25-HC through Notch3 signaling pathway activation. CYP7B1 expression in BM-MSCs was regulated by NF-κB p65 under inflammatory conditions. BM-MSCs from CYP7B1 conditional knockout (CKO) mice had impaired activation abilities, relating to the delayed healing of bone defects. Intravenous infusion of BM-MSCs overexpressing CYP7B1 could improve the pathological scores of mice with collagen-induced arthritis. These results clarified the quiescence-activation regulatory mechanism of BM-MSCs through the NF-κB p65-CYP7B1-Notch3 axis and provided insight into enhancing BM-MSCs biological function as well as the subsequent therapeutic effect.


Assuntos
Família 7 do Citocromo P450 , Hidroxicolesteróis , Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , Camundongos Knockout , Animais , Humanos , Masculino , Camundongos , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Células Cultivadas , Família 7 do Citocromo P450/metabolismo , Hidroxicolesteróis/metabolismo , Hidroxicolesteróis/farmacologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Receptor Notch3/metabolismo , Receptor Notch3/genética , Transdução de Sinais/efeitos dos fármacos , Esteroide Hidroxilases , Fator de Transcrição RelA/metabolismo
20.
Sci Adv ; 9(46): eadf4345, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37976359

RESUMO

Iron deficiency (ID) is a widespread condition concomitant with disease and results in systemic dysfunction of target tissues including skeletal muscle. Activated by ID, ferritinophagy is a recently found type of selective autophagy, which plays an important role in various physiological and pathological conditions. In this study, we demonstrated that ID-mediated ferritinophagy impeded myogenic differentiation. Mechanistically, ferritinophagy induced RNF20 degradation through the autophagy-lysosomal pathway and then negatively regulated histone H2B monoubiquitination at lysine-120 in the promoters of the myogenic markers MyoD and MyoG, which inhibited myogenic differentiation and regeneration. Conditional knockout of NCOA4 in satellite cells, overexpression of RNF20 or treatment with 3-methyladenine restored skeletal muscle regenerative potential under ID conditions. In patients with ID, RNF20 and H2Bub1 protein expression is downregulated in skeletal muscle. In conclusion, our study indicated that the ferritinophagy-RNF20-H2Bub1 axis is a pathological molecular mechanism underlying ID-induced skeletal muscle impairment, suggesting potential therapeutic prospects.


Assuntos
Histonas , Ubiquitina-Proteína Ligases , Humanos , Histonas/metabolismo , Músculo Esquelético/metabolismo , Regeneração , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA