RESUMO
Given the widespread application of glucocorticoids in ophthalmology, the associated elevation of intraocular pressure (IOP) has long been a vexing concern for clinicians, yet the underlying mechanisms remain inconclusive. Much of the discussion focuses on the extracellular matrix (ECM) of trabecular meshwork (TM). It is widely agreed that glucocorticoids impact the expression of matrix metalloproteinases (MMPs), leading to ECM deposition. Since Zn2+ is vital for MMPs, we explored its role in ECM alterations induced by dexamethasone (DEX). Our study revealed that in human TM cells treated with DEX, the level of intracellular Zn2+ significantly decreased, accompanied by impaired extracellular Zn2+ uptake. This correlated with changes in several Zrt-, Irt-related proteins (ZIPs) and metallothionein. ZIP8 knockdown impaired extracellular Zn2+ uptake, but Zn2+ chelation did not affect ZIP8 expression. Resembling DEX's effects, chelation of Zn2+ decreased MMP2 expression, increased the deposition of ECM proteins, and induced structural disarray of ECM. Conversely, supplementation of exogenous Zn2+ in DEX-treated cells ameliorated these outcomes. Notably, dietary zinc supplementation in mice significantly reduced DEX-induced IOP elevation and collagen content in TM, thereby rescuing the visual function of the mice. These findings underscore zinc's pivotal role in ECM regulation, providing a novel perspective on the pathogenesis of glaucoma.NEW & NOTEWORTHY Our study explores zinc's pivotal role in mitigating extracellular matrix dysregulation in the trabecular meshwork and glucocorticoid-induced ocular hypertension. We found that in human trabecular meshwork cells treated with dexamethasone, intracellular Zn2+ significantly decreased, accompanied by impaired extracellular Zn2+ uptake. Zinc supplementation rescues visual function by modulating extracellular matrix proteins and lowering intraocular pressure, offering a direction for further exploration in glaucoma management.
Assuntos
Glaucoma , Malha Trabecular , Camundongos , Humanos , Animais , Malha Trabecular/metabolismo , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Glaucoma/patologia , Pressão Intraocular , Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Metaloproteinases da Matriz/metabolismo , Zinco/metabolismo , Células CultivadasRESUMO
INTRODUCTION: Non-ophthalmologists often lack sufficient operational training to use a direct ophthalmoscope proficiently, resulting in a global deficit of basic ophthalmological skills among general practitioners. This deficiency hampers the timely diagnosis, referral, and intervention of patients. Consequently, the optimization of teaching tools and methods to enhance teaching efficiency is imperative. This study explores the effectiveness of the Eyesi Direct Ophthalmoscope Simulator (Eyesi) as an innovative tool for fundus examination training. METHODS: Medical undergraduates were randomly assigned to Group A or B (n = 168). All participants completed a pre-training questionnaire. Group A received Eyesi training, while Group B underwent traditional direct ophthalmoscope (TDO) training. Subsequently, participants answered questionnaires relevant to their respective training methods. Both groups exchanged training tools and completed a summary questionnaire. RESULTS: After training, 54.17% of participants believed that images presented by the Eyesi were consistent with the real fundus. Group A scored significantly higher than Group B in fundus structure recognition and self-confidence in examination. The degree of mastery over fundus theory score increased from 6.10 ± 0.13 to 7.74 ± 0.16 (P < 0.001) in Group A, but Group B did not demonstrate a significant difference. We also compared undergraduates' tendencies for different learning purposes, 75.59% of participants preferred the Eyesi to TDO as a training tool, and 88.41% of participants were receptive to introducing the Eyesi in training. CONCLUSION: According to subjective participant feedback, Eyesi outperformed TDO in fundus observation, operational practice, and theoretical learning. It effectively equips undergraduates with fundus examination skills, potentially promoting the use of direct ophthalmoscopes in primary medical institutions.
Assuntos
Competência Clínica , Educação de Graduação em Medicina , Oftalmoscópios , Treinamento por Simulação , Humanos , Educação de Graduação em Medicina/métodos , Masculino , Feminino , Inquéritos e Questionários , Oftalmologia/educação , Adulto Jovem , Estudantes de Medicina , Avaliação Educacional , Oftalmoscopia/métodosRESUMO
Purpose: The present study aimed to evaluate the effect of acrizanib, a small molecule inhibitor targeting vascular endothelial growth factor receptor 2 (VEGFR2), on physiological angiogenesis and pathological neovascularization in the eye and to explore the underlying molecular mechanisms. Methods: We investigated the potential role of acrizanib in physiological angiogenesis using C57BL/6J newborn mice, and pathological angiogenesis using the mouse oxygen-induced retinopathy (OIR) and laser-induced choroidal neovascularization (CNV) models. Moreover, vascular endothelial growth factor (VEGF)-treated human umbilical vein endothelial cells (HUVECs) were used as an in vitro model for studying the molecular mechanism underlying acrizanib's antiangiogenic effects. Results: The intravitreal injection of acrizanib did not show a considerable impact on physiological angiogenesis and retinal thickness, indicating a potentially favorable safety profile. In the mouse models of OIR and CNV, acrizanib showed promising results in reducing pathological neovascularization, inflammation, and vascular leakage, indicating its potential efficacy against pathological angiogenesis. Consistent with in vivo results, acrizanib blunted angiogenic events in VEGF-treated HUVECs such as proliferation, migration, and tube formation. Furthermore, acrizanib inhibited the multisite phosphorylation of VEGFR2 to varying degrees and the activation of its downstream signal pathways in VEGF-treated HUVECs. Conclusions: This study suggested the potential efficacy and safety of acrizanib in suppressing fundus neovascularization. Acrizanib functioned through inhibiting multiple phosphorylation sites of VEGFR2 in endothelial cells to different degrees. Translational Relevance: These results indicated that acrizanib might hold promise as a potential candidate for the treatment of ocular vascular diseases.
Assuntos
Neovascularização de Coroide , Doenças Retinianas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Humanos , Camundongos , Proliferação de Células , Células Cultivadas , Neovascularização de Coroide/tratamento farmacológico , Células Endoteliais da Veia Umbilical Humana/metabolismo , Camundongos Endogâmicos C57BL , Oxigênio/metabolismo , Fosforilação , Doenças Retinianas/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismoRESUMO
As part of the central nervous system, the optic nerve, composed of axons from retinal ganglion cells (RGCs), generally fails to regenerate on its own when injured in adult mammals. An innovative approach to promoting optic nerve regeneration involves manipulating the interactions between amacrine cells (ACs) and RGCs. Here, we identified a unique AC subtype, dopaminergic ACs (DACs), that responded early after optic nerve crush by down-regulating neuronal activity and reducing retinal dopamine (DA) release. Activating DACs or augmenting DA release with levodopa demonstrated neuroprotective effects and modestly enhanced axon regeneration. Within this context, we pinpointed the DA receptor D1 (DRD1) as a critical mediator of DAC-derived DA and showed that RGC-specific Drd1 overexpression effectively overcame subtype-specific barriers to regeneration. This strategy markedly boosted RGC survival and axon regeneration after crush and preserved vision in a glaucoma model. This study unveils the crucial role of DAC-derived DA signaling in optic nerve regeneration, holding promise for therapeutic insights into neural repair.
Assuntos
Células Amácrinas , Dopamina , Regeneração Nervosa , Nervo Óptico , Células Ganglionares da Retina , Transdução de Sinais , Animais , Células Amácrinas/metabolismo , Dopamina/metabolismo , Regeneração Nervosa/efeitos dos fármacos , Nervo Óptico/metabolismo , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Traumatismos do Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/tratamento farmacológico , Traumatismos do Nervo Óptico/patologia , Camundongos , Axônios/metabolismo , Axônios/fisiologia , Receptores de Dopamina D1/metabolismo , Visão Ocular/fisiologia , Modelos Animais de DoençasRESUMO
Purpose: The aim of this study was to elucidate the role of Sema4D in the pathogenesis of senescence-associated choroidal neovascularization (CNV) and to explore its underlying mechanisms. Methods: In this study, we utilized a model of laser-induced CNV in both young (3 months old) and old (18 months old) mice, including those with or without Sema4D knockout. The expression and localization of Sema4D in CNV were assessed using PCR, Western blot, and immunostaining. Subsequently, the morphological and imaging examinations were used to evaluate the size of CNV and vascular leakage. Finally, the expression of M2 markers, senescence-related markers, and molecules involved in the RhoA/ROCK pathway was detected. Results: We found that Sema4D was predominantly expressed in macrophages within CNV lesions, and both the mRNA and protein levels of Sema4D progressively increased following laser photocoagulation, a trend more pronounced in old mice. Moreover, Sema4D knockout markedly inhibited M2 polarization in senescent macrophages and reduced the size and leakage of CNV, particularly in aged mice. Mechanistically, aging was found to upregulate RhoA/ROCK signaling, and knockout of Sema4D effectively suppressed the activation of this pathway, with more significant effects observed in aged mice. Conclusions: Our findings revealed that the deletion of Sema4D markedly inhibited M2 macrophage polarization through the suppression of the RhoA/ROCK pathway, ultimately leading to the attenuation of senescence-associated CNV. These data indicate that targeting Sema4D could offer a promising approach for gene editing therapy in patients with neovascular age-related macular degeneration.
Assuntos
Neovascularização de Coroide , Macrófagos , Semaforinas , Transdução de Sinais , Quinases Associadas a rho , Proteína rhoA de Ligação ao GTP , Animais , Masculino , Camundongos , Antígenos CD/metabolismo , Antígenos CD/genética , Western Blotting , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/genética , Neovascularização de Coroide/patologia , Modelos Animais de Doenças , Angiofluoresceinografia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Transdução de Sinais/fisiologiaRESUMO
Retinal ischaemia/reperfusion (I/R) injury is a common cause of retinal ganglion cell (RGC) apoptosis and axonal degeneration, resulting in irreversible visual impairment. However, there are no available neuroprotective and neurorestorative therapies for retinal I/R injury, and more effective therapeutic approaches are needed. The role of the myelin sheath of the optic nerve after retinal I/R remains unknown. Here, we report that demyelination of the optic nerve is an early pathological feature of retinal I/R and identify sphingosine-1-phosphate receptor 2 (S1PR2) as a therapeutic target for alleviating demyelination in a model of retinal I/R caused by rapid changes in intraocular pressure. Targeting the myelin sheath via S1PR2 protected RGCs and visual function. In our experiment, we observed early damage to the myelin sheath and persistent demyelination accompanied by S1PR2 overexpression after injury. Blockade of S1PR2 by the pharmacological inhibitor JTE-013 reversed demyelination, increased the number of oligodendrocytes, and inhibited microglial activation, contributing to the survival of RGCs and alleviating axonal damage. Finally, we evaluated the postoperative recovery of visual function by recording visual evoked potentials and assessing the quantitative optomotor response. In conclusion, this study is the first to reveal that alleviating demyelination by inhibiting S1PR2 overexpression may be a therapeutic strategy for retinal I/R-related visual impairment.
Assuntos
Doenças Desmielinizantes , Neurite Óptica , Humanos , Receptores de Esfingosina-1-Fosfato/uso terapêutico , Potenciais Evocados Visuais , Neurite Óptica/tratamento farmacológico , Neurite Óptica/etiologia , Neurite Óptica/patologia , Isquemia , Reperfusão/efeitos adversos , Transtornos da Visão/complicaçõesRESUMO
Vision depends on accurate signal conduction from the retina to the brain through the optic nerve, an important part of the central nervous system that consists of bundles of axons originating from retinal ganglion cells. The mammalian optic nerve, an important part of the central nervous system, cannot regenerate once it is injured, leading to permanent vision loss. To date, there is no clinical treatment that can regenerate the optic nerve and restore vision. Our previous study found that the mobile zinc (Zn2+) level increased rapidly after optic nerve injury in the retina, specifically in the vesicles of the inner plexiform layer. Furthermore, chelating Zn2+ significantly promoted axonal regeneration with a long-term effect. In this study, we conditionally knocked out zinc transporter 3 (ZnT3) in amacrine cells or retinal ganglion cells to construct two transgenic mouse lines (VGATCreZnT3fl/fl and VGLUT2CreZnT3fl/fl, respectively). We obtained direct evidence that the rapidly increased mobile Zn2+ in response to injury was from amacrine cells. We also found that selective deletion of ZnT3 in amacrine cells promoted retinal ganglion cell survival and axonal regeneration after optic nerve crush injury, improved retinal ganglion cell function, and promoted vision recovery. Sequencing analysis of reginal ganglion cells revealed that inhibiting the release of presynaptic Zn2+ affected the transcription of key genes related to the survival of retinal ganglion cells in postsynaptic neurons, regulated the synaptic connection between amacrine cells and retinal ganglion cells, and affected the fate of retinal ganglion cells. These results suggest that amacrine cells release Zn2+ to trigger transcriptomic changes related to neuronal growth and survival in reginal ganglion cells, thereby influencing the synaptic plasticity of retinal networks. These results make the theory of zinc-dependent retinal ganglion cell death more accurate and complete and provide new insights into the complex interactions between retinal cell networks.
RESUMO
Purpose: This study aimed to investigate the age-dependent anti-angiogenic capability of melatonin in choroidal neovascularization (CNV) and to explore the underlying molecular mechanisms. Methods: In the present study, a laser-induced CNV model was established in both young (three months of age) and old (18 months of age) mice, and the size of CNV lesions and vascular leakage was detected by morphological and imaging examination. Next, Western blot and immunostaining were used to observe the levels of M2 markers, senescence-related markers, and molecules involved in IL-10/STAT3 pathway. Additionally, colivelin was used to study the effect of IL-10/STAT3 pathway activation on the expression of M2 markers and senescence-related markers by Western blot and immunostaining. Finally, the effects of colivelin on melatonin-induced reduction of CNV size and vascular leakage in mice at different ages were assessed using morphological and imaging examination. Results: Our results revealed that aging promoted M2 macrophage/microglia polarization, and aggravated CNV and vascular leakage. Melatonin significantly inhibited the M2 polarization of senescent macrophage/microglia and reduced the CNV area and vascular leakage. Moreover, melatonin markedly suppressed IL-10/STAT3 pathway activation in the macrophage/microglia of old mice, and STAT3 activator colivelin reversed the suppressive effect of melatonin on M2 polarization of senescent macrophage/microglia and laser-induced CNV in old mice. Conclusions: Our data demonstrated that melatonin significantly prevented the M2 polarization of senescent macrophage/microglia by inhibiting the IL-10/STAT3 pathway, and eventually attenuated senescence-associated CNV. These findings suggested that melatonin could serve as a promising therapeutic agent to treat CNV and other age-related ocular diseases.
Assuntos
Neovascularização de Coroide , Melatonina , Camundongos , Animais , Microglia/metabolismo , Melatonina/farmacologia , Melatonina/uso terapêutico , Melatonina/metabolismo , Interleucina-10/metabolismo , Interleucina-10/farmacologia , Interleucina-10/uso terapêutico , Neovascularização de Coroide/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de DoençasRESUMO
Plastic baskets are commonly used as containers for fresh tea leaves during storage and transport after harvest. Nevertheless, there are significant challenges in controlling the core temperature of the basket since fresh tea leaves still maintain a certain degree of respiration after being harvested, with extremely high temperatures being the major factor for the color change of fresh tea leaves. A numerical model was developed to improve the temperature control of the plastic basket, by which the influence of different structural parameters on the core temperature in the plastic baskets with fresh tea leaves was analyzed. The accuracy of the model in predicting airflow and temperature distributions was validated against experimental data. The maximum RMSE was 1.158 °C and the maximum MRE was 5.410% between the simulated and test temperature value. The maximum deviation between the simulated velocity and test velocity was 0.11 m/s, the maximum RE was 29.05% and the maximum SD was 0.024. The results show that a plastic basket with a ventilation duct efficiently decreased the temperature of the fresh tea leaves and significantly affected the heat transfer between the fresh tea leaves and the ambient air compared to the plastic basket without a ventilation duct. Furthermore, the effect on the heat transfer was further expanded by the use of a plastic basket with a ventilation duct when the plastic baskets were stacked. The maximum temperature differences were 0.52 and 0.40 according to the stacked and single-layer products, respectively. The ambient temperature and the bulk density of the fresh tea leaves have a significant influence on the core temperature.
RESUMO
A reliable animal model providing chronic and persistent ocular hypertension and characteristic neurodegeneration is essential to recapitulate human glaucoma and understand the underlying pathophysiological mechanisms behind this disease. Many approaches have been tried to establish persistently elevated intraocular pressure (IOP), while no efficient model and no systematic evaluation has been widely accepted yet. Herein, we developed a novel approach to reliably induce persistent IOP elevation using an injectable hydrogel formulated by hyperbranched macromolecular poly(ethylene glycol) (HB-PEG) and thiolated hyaluronic acid (HA-SH) under physiological conditions and established a systematic system for model evaluation. By formulation screening, an appropriate hydrogel with proper mechanical property, non-swelling profile and cytocompatibility was selected for further experiment. By intracameral injection, a persistent IOP elevation over 50% above baseline was obtained and it led to progressive retinal ganglion cell loss and ganglion cell complex thickness reduction. The evaluation of the efficacy of the model was thoroughly analyzed by whole-mounts retina immunostaining, optical coherence tomography, and hematoxylin-eosin staining for histological changes and by electroretinography for visual function changes. The N35-P50 amplitude of the pattern electroretinography and the N2-P2 amplitude of the flash visual-evoked potential were decreased, while the scotopic electroretinography showed no statistically significant changes. The in situ-forming HB-PEG/HA-SH hydrogel system could be an appropriate strategy for developing a reliable experimental glaucoma model without any confounding factors. We expect this model would be conducive to the development of neuroprotective and neuro-regenerative therapies.
Assuntos
Glaucoma , Hipertensão Ocular , Animais , Modelos Animais de Doenças , Glaucoma/induzido quimicamente , Humanos , Hidrogéis , Pressão Intraocular , Hipertensão Ocular/induzido quimicamente , Tonometria OcularRESUMO
Retinal ganglion cells (RGCs), the projection neurons of the eye, are irreversibly lost once the optic nerve is injured, which is a critical mechanism of glaucoma. Mobile zinc (Zn2+) levels rapidly increase in retinal interneuron amacrine cells and Zn2+ is then transferred to RGCs via the Zn2+ transporter protein ZnT-3, triggering RGC loss in optic nerve injury. Zn2+ chelation and ZnT-3 deletion promote long-term RGC survival. However, the downstream signaling pathways of Zn2+ in RGCs remains unknown. Here, we show that increased levels of Zn2+ upregulate the expression and activity of mitochondrial zinc metallopeptidase OMA1 in the retina, leading to the cleavage of DELE1 and activation of cytosolic eIF2α kinase PKR, triggering the integrated stress response (ISR) in RGCs. Our study identified OMA1 and ISR as the downstream molecular mechanisms of retinal Zn2+ and potential targets for preventing the progression of Zn2+-associated neuronal damage.
RESUMO
Neurodegenerative disorders are characterized by typical neuronal degeneration and axonal loss in the central nervous system (CNS). Demyelination occurs when myelin or oligodendrocytes experience damage. Pathological changes in demyelination contribute to neurodegenerative diseases and worsen clinical symptoms during disease progression. Glaucoma is a neurodegenerative disease characterized by progressive degeneration of retinal ganglion cells (RGCs) and the optic nerve. Since it is not yet well understood, we hypothesized that demyelination could play a significant role in glaucoma. Therefore, this study started with the morphological and functional manifestations of demyelination in the CNS. Then, we discussed the main mechanisms of demyelination in terms of oxidative stress, mitochondrial damage, and immuno-inflammatory responses. Finally, we summarized the existing research on the relationship between optic nerve demyelination and glaucoma, aiming to inspire effective treatment plans for glaucoma in the future.