Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Eye Res ; 242: 109881, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554800

RESUMO

The retinal ganglion cells (RGCs) serve as the critical pathway for transmitting visual information from the retina to the brain, yet they can be dramatically impacted by diseases such as glaucoma. When investigating disease processes affecting RGCs in mouse models, accurately quantifying affected cells becomes essential. However, the use of pan RGC markers like RBPMS or THY1 presents challenges in accurate total cell counting. While Brn3a serves as a reliable RGC nuclear marker for automated counting, it fails to encompass all RGC subtypes in mice. To address this limitation and enable precise automated counting, our research endeavors to develop a method for labeling nuclei in all RGC subtypes. Investigating RGC subtypes labeled with the nuclear marker POU6F2 revealed that numerous RGCs unlabeled by Brn3a were, in fact, labeled with POU6F2. We hypothesize that using antibodies against both Brn3a and POU6F2 would label virtually all RGC nuclei in the mouse retina. Our experiments confirmed that staining retinas with both markers resulted in the labeling of all RGCs. Additionally, when using the cell body marker RBPMS known to label all mouse RGCs, all RBPMS-labeled cells also exhibited Brn3a or POU6F2 labeling. This combination of Brn3a and POU6F2 antibodies provides a pan-RGC nuclear stain, facilitating accurate automated counting by labeling cell nuclei in the retina.


Assuntos
Núcleo Celular , Camundongos Endogâmicos C57BL , Células Ganglionares da Retina , Fator de Transcrição Brn-3A , Animais , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Camundongos , Contagem de Células , Núcleo Celular/metabolismo , Fator de Transcrição Brn-3A/metabolismo , Coloração e Rotulagem/métodos , Biomarcadores/metabolismo
2.
bioRxiv ; 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39416210

RESUMO

Background: The present study is designed to identify the genes modulating optic nerve regeneration in the mouse. Using the BXD mouse strains as a genetic mapping panel, we examined differential responses to axon regeneration in order to map genomic loci modulating axonal regeneration. Methods: To study regeneration in the optic nerve, Pten was knocked down in the retinal ganglion cells using adeno-associated virus (AAV) delivery of an shRNA, followed by the induction of a mild inflammatory response by an intravitreal injection of Zymosan with CPT-cAMP. The axons of the retinal ganglion cells were damaged by optic nerve crush (ONC). Following a 12-day survival period, regenerating axons were labeled by Cholera Toxin B. Two days later, the regenerating axons within the optic nerve were examined to determine the number of regenerating axons and the distance traveled down the optic nerve. An integral genomic map was made using the regenerative response. Candidate genes were tested by knocking down expression using shRNA or by overexpressing the gene in AAV vectors. Results: The analysis revealed a considerable amount of differential axonal regeneration across all 33 BXD strains, demonstrated by the number of axons regenerating and the length of the regenerating axons. Some strains (BXD99, BXD90, and BXD29) demonstrated significant axonal regeneration; while other strains (BXD13, BXD18, and BXD34) had very little axon regrowth. Within the regenerative data, there was a 4-fold increase in distance regenerated and a 7.5-fold difference in the number of regenerating axons. These data were used to map a quantitative trait locus modulating axonal regeneration to Chromosome 14 (115 to 119 Mb). Within this locus were 16 annotated genes. Subsequent testing revealed that one candidate gene, Dnajc3 , modulates axonal regeneration. Knocking down of Dnajc3 led to a decreased regeneration response in the high regenerative strains (BXD90), while overexpression of Dnajc3 resulted in an increased regeneration response in C57BL/6J and a low regenerative strain (BXD34). Conclusion: In this study, Dnajc3 (encodes Heat Shock Protein 40, HSP40, a molecular chaperone) was identified as a modulator of axon regeneration in mice. This is the first report defining the role of Dnajc3 (HSP40) in axon regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA