Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
RSC Adv ; 14(1): 255-265, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38173581

RESUMO

CdS nanoparticles have wide applications as photocatalysts for degradation of organic pollutants, but due to their limited turnover number and off-pathway charge recombination processes, their degradation efficiency is low. Herein, aminated graphene quantum dots/CdS (GQDs/CdS) nanobelts were successfully fabricated by solvothermal and hydrothermal processes. The prepared GQDs/CdS were characterized by physical methods to investigate their structure, morphology, optical properties, specific surface area, element composition, and chemical state. GQDs/CdS materials promoted efficient charge separation, and showed high efficiency in the photocatalytic degradation of the organic dye Rhodamine B (RhB) under visible light. The degradation efficiency of RhB samples over 0.05 g of catalysts reached 97.40% after 150 min, a much higher efficiency in comparison to pure CdS. Electron paramagnetic resonance (EPR) spectroscopy provided direct evidence for ˙OH and ˙O2- as the reactive oxidative species using DMPO as a spin trap. Consistent with the experimental results, a possible mechanism of RhB photocatalytic degradation by GQDs/CdS under visible light was proposed. This work may provide environmentally friendly photocatalysts for degrading organic dyes and purifying water.

2.
Nat Commun ; 15(1): 3683, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693101

RESUMO

Hindered ethers are ubiquitous in natural products and bioactive molecules. However, developing an efficient method for the stereocontrolled synthesis of all stereoisomers of chiral hindered ethers is highly desirable but challenging. Here we show a strategy that utilizes in situ-generated water as a nucleophile in an asymmetric cascade reaction involving two highly reactive intermediates, 3-furyl methyl cations and ortho-quinone methides (o-QMs), to synthesize chiral hindered ethers. The Ca(II)/Au(I) synergistic catalytic system enables the control of diastereoselectivity and enantioselectivity by selecting suitable chiral phosphine ligands in this cascade hydration/1,4-addition reaction, affording all four stereoisomers of a diverse range of chiral tetra-aryl substituted ethers with high diastereoselectivities (up to >20/1) and enantioselectivities (up to 95% ee). This work provides an example of chiral Ca(II)/Au(I) bimetallic catalytic system controlling two stereogenic centers via a cascade reaction in a single operation.

3.
ACS Nano ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052842

RESUMO

Moisture power generation (MPG) technology, producing clean and sustainable energy from a humid environment, has drawn significant attention and research efforts in recent years as a means of easing the energy crisis. Despite the rapid progress, MPG technology still faces numerous challenges with the most significant one being the low power-generating performance of individual MPG devices. In this review, we introduce the background and underlying principles of MPG technology while thoroughly explaining how the selection of suitable materials (carbons, polymers, inorganic salts, etc.) and the optimization of the device structure (pore structure, moisture gradient structure, functional group gradient structure, and electrode structure) can address the existing and anticipated challenges. Furthermore, this review highlights the major scientific and engineering hurdles on the way to advancing MPG technology and offers potential insights for the development of high-performance MPG systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA