Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 40(17): 8674-89, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22743270

RESUMO

Programmed -1 ribosomal frameshifting is employed in the expression of a number of viral and cellular genes. In this process, the ribosome slips backwards by a single nucleotide and continues translation of an overlapping reading frame, generating a fusion protein. Frameshifting signals comprise a heptanucleotide slippery sequence, where the ribosome changes frame, and a stimulatory RNA structure, a stem-loop or RNA pseudoknot. Antisense oligonucleotides annealed appropriately 3' of a slippery sequence have also shown activity in frameshifting, at least in vitro. Here we examined frameshifting at the U6A slippery sequence of the HIV gag/pol signal and found high levels of both -1 and -2 frameshifting with stem-loop, pseudoknot or antisense oligonucleotide stimulators. By examining -1 and -2 frameshifting outcomes on mRNAs with varying slippery sequence-stimulatory RNA spacing distances, we found that -2 frameshifting was optimal at a spacer length 1-2 nucleotides shorter than that optimal for -1 frameshifting with all stimulatory RNAs tested. We propose that the shorter spacer increases the tension on the mRNA such that when the tRNA detaches, it more readily enters the -2 frame on the U6A heptamer. We propose that mRNA tension is central to frameshifting, whether promoted by stem-loop, pseudoknot or antisense oligonucleotide stimulator.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , RNA Mensageiro/química , Animais , Células COS , Chlorocebus aethiops , Espectrometria de Massas , Oligonucleotídeos Antissenso/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Transfecção
2.
Cell Rep ; 15(1): 132-146, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27052176

RESUMO

p53 tumor suppressor maintains genomic stability, typically acting through cell-cycle arrest, senescence, and apoptosis. We discovered a function of p53 in preventing conflicts between transcription and replication, independent of its canonical roles. p53 deficiency sensitizes cells to Topoisomerase (Topo) II inhibitors, resulting in DNA damage arising spontaneously during replication. Topoisomerase IIα (TOP2A)-DNA complexes preferentially accumulate in isogenic p53 mutant or knockout cells, reflecting an increased recruitment of TOP2A to regulate DNA topology. We propose that p53 acts to prevent DNA topological stress originating from transcription during the S phase and, therefore, promotes normal replication fork progression. Consequently, replication fork progression is impaired in the absence of p53, which is reversed by transcription inhibition. Pharmacologic inhibition of transcription also attenuates DNA damage and decreases Topo-II-DNA complexes, restoring cell viability in p53-deficient cells. Together, our results demonstrate a function of p53 that may underlie its role in tumor suppression.


Assuntos
Replicação do DNA , Instabilidade Genômica , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo , Antígenos de Neoplasias/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Células HCT116 , Humanos , Proteínas de Ligação a Poli-ADP-Ribose , Inibidores da Topoisomerase/farmacologia , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA