Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.801
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(7): 1895-1913.e19, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33657410

RESUMO

A dysfunctional immune response in coronavirus disease 2019 (COVID-19) patients is a recurrent theme impacting symptoms and mortality, yet a detailed understanding of pertinent immune cells is not complete. We applied single-cell RNA sequencing to 284 samples from 196 COVID-19 patients and controls and created a comprehensive immune landscape with 1.46 million cells. The large dataset enabled us to identify that different peripheral immune subtype changes are associated with distinct clinical features, including age, sex, severity, and disease stages of COVID-19. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was found in diverse epithelial and immune cell types, accompanied by dramatic transcriptomic changes within virus-positive cells. Systemic upregulation of S100A8/A9, mainly by megakaryocytes and monocytes in the peripheral blood, may contribute to the cytokine storms frequently observed in severe patients. Our data provide a rich resource for understanding the pathogenesis of and developing effective therapeutic strategies for COVID-19.


Assuntos
COVID-19/imunologia , Megacariócitos/imunologia , Monócitos/imunologia , RNA Viral , SARS-CoV-2/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , China , Estudos de Coortes , Citocinas/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Viral/sangue , RNA Viral/isolamento & purificação , Análise de Célula Única , Transcriptoma/imunologia , Adulto Jovem
3.
Genome Res ; 33(10): 1690-1707, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37884341

RESUMO

The rumen undergoes developmental changes during maturation. To characterize this understudied dynamic process, we profiled single-cell transcriptomes of about 308,000 cells from the rumen tissues of sheep and goats at 17 time points. We built comprehensive transcriptome and metagenome atlases from early embryonic to rumination stages, and recapitulated histomorphometric and transcriptional features of the rumen, revealing key transitional signatures associated with the development of ruminal cells, microbiota, and core transcriptional regulatory networks. In addition, we identified and validated potential cross-talk between host cells and microbiomes and revealed their roles in modulating the spatiotemporal expression of key genes in ruminal cells. Cross-species analyses revealed convergent developmental patterns of cellular heterogeneity, gene expression, and cell-cell and microbiome-cell interactions. Finally, we uncovered how the interactions can act upon the symbiotic rumen system to modify the processes of fermentation, fiber digestion, and immune defense. These results significantly enhance understanding of the genetic basis of the unique roles of rumen.


Assuntos
Metagenoma , Microbiota , Ovinos/genética , Animais , Transcriptoma , Rúmen , Ruminantes/genética
4.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38493346

RESUMO

Single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) data provided new insights into the understanding of epigenetic heterogeneity and transcriptional regulation. With the increasing abundance of dataset resources, there is an urgent need to extract more useful information through high-quality data analysis methods specifically designed for scATAC-seq. However, analyzing scATAC-seq data poses challenges due to its near binarization, high sparsity and ultra-high dimensionality properties. Here, we proposed a novel network diffusion-based computational method to comprehensively analyze scATAC-seq data, named Single-Cell ATAC-seq Analysis via Network Refinement with Peaks Location Information (SCARP). SCARP formulates the Network Refinement diffusion method under the graph theory framework to aggregate information from different network orders, effectively compensating for missing signals in the scATAC-seq data. By incorporating distance information between adjacent peaks on the genome, SCARP also contributes to depicting the co-accessibility of peaks. These two innovations empower SCARP to obtain lower-dimensional representations for both cells and peaks more effectively. We have demonstrated through sufficient experiments that SCARP facilitated superior analyses of scATAC-seq data. Specifically, SCARP exhibited outstanding cell clustering performance, enabling better elucidation of cell heterogeneity and the discovery of new biologically significant cell subpopulations. Additionally, SCARP was also instrumental in portraying co-accessibility relationships of accessible regions and providing new insight into transcriptional regulation. Consequently, SCARP identified genes that were involved in key Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to diseases and predicted reliable cis-regulatory interactions. To sum up, our studies suggested that SCARP is a promising tool to comprehensively analyze the scATAC-seq data.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Cromatina , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Cromatina/genética , Genoma , Epigenômica , Análise de Dados
5.
Nature ; 586(7831): 730-734, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32939094

RESUMO

Persistent neural activity in cortical, hippocampal, and motor networks has been described as mediating working memory for transiently encountered stimuli1,2. Internal emotional states, such as fear, also persist following exposure to an inciting stimulus3, but it is unclear whether slow neural dynamics are involved in this process. Neurons in the dorsomedial and central subdivisions of the ventromedial hypothalamus (VMHdm/c) that express the nuclear receptor protein NR5A1 (also known as SF1) are necessary for defensive responses to predators in mice4-7. Optogenetic activation of these neurons, referred to here as VMHdmSF1 neurons, elicits defensive behaviours that outlast stimulation5,8, which suggests the induction of a persistent internal state of fear or anxiety. Here we show that in response to naturalistic threatening stimuli, VMHdmSF1 neurons in mice exhibit activity that lasts for many tens of seconds. This persistent activity was correlated with, and required for, persistent defensive behaviour in an open-field assay, and depended on neurotransmitter release from VMHdmSF1 neurons. Stimulation and calcium imaging in acute slices showed that there is local excitatory connectivity between VMHdmSF1 neurons. Microendoscopic calcium imaging of VMHdmSF1 neurons revealed that persistent activity at the population level reflects heterogeneous dynamics among individual cells. Unexpectedly, distinct but overlapping VMHdmSF1 subpopulations were persistently activated by different modalities of threatening stimulus. Computational modelling suggests that neither recurrent excitation nor slow-acting neuromodulators alone can account for persistent activity that maintains stimulus identity. Our results show that stimulus-specific slow neural dynamics in the hypothalamus, on a time scale orders of magnitude longer than that of working memory in the cortex9,10, contribute to a persistent emotional state.


Assuntos
Medo/fisiologia , Hipotálamo/citologia , Hipotálamo/fisiologia , Neurônios/fisiologia , Estimulação Acústica , Animais , Ansiedade/fisiopatologia , Cálcio/análise , Simulação por Computador , Sinais (Psicologia) , Masculino , Camundongos , Neurotransmissores/metabolismo , Optogenética , Comportamento Predatório , Fatores de Tempo
6.
Nature ; 583(7816): 437-440, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32434211

RESUMO

In December 2019, coronavirus disease 2019 (COVID-19), which is caused by the new coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified in Wuhan (Hubei province, China)1; it soon spread across the world. In this ongoing pandemic, public health concerns and the urgent need for effective therapeutic measures require a deep understanding of the epidemiology, transmissibility and pathogenesis of COVID-19. Here we analysed clinical, molecular and immunological data from 326 patients with confirmed SARS-CoV-2 infection in Shanghai. The genomic sequences of SARS-CoV-2, assembled from 112 high-quality samples together with sequences in the Global Initiative on Sharing All Influenza Data (GISAID) dataset, showed a stable evolution and suggested that there were two major lineages with differential exposure history during the early phase of the outbreak in Wuhan. Nevertheless, they exhibited similar virulence and clinical outcomes. Lymphocytopenia, especially reduced CD4+ and CD8+ T cell counts upon hospital admission, was predictive of disease progression. High levels of interleukin (IL)-6 and IL-8 during treatment were observed in patients with severe or critical disease and correlated with decreased lymphocyte count. The determinants of disease severity seemed to stem mostly from host factors such as age and lymphocytopenia (and its associated cytokine storm), whereas viral genetic variation did not significantly affect outcomes.


Assuntos
Betacoronavirus/genética , Betacoronavirus/patogenicidade , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Interações Hospedeiro-Patógeno/imunologia , Linfopenia/virologia , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Síndrome do Desconforto Respiratório/virologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Animais , Infecções Assintomáticas/epidemiologia , Betacoronavirus/classificação , Betacoronavirus/isolamento & purificação , COVID-19 , China/epidemiologia , Estudos de Coortes , Infecções por Coronavirus/complicações , Infecções por Coronavirus/epidemiologia , Estado Terminal/epidemiologia , Progressão da Doença , Evolução Molecular , Feminino , Variação Genética , Genoma Viral/genética , Hospitalização/estatística & dados numéricos , Humanos , Mediadores da Inflamação/imunologia , Interleucina-6/sangue , Interleucina-6/imunologia , Interleucina-8/sangue , Interleucina-8/imunologia , Contagem de Linfócitos , Linfopenia/complicações , Masculino , Pessoa de Meia-Idade , Pandemias , Filogenia , Pneumonia Viral/complicações , Pneumonia Viral/epidemiologia , Síndrome do Desconforto Respiratório/complicações , SARS-CoV-2 , Linfócitos T/citologia , Linfócitos T/imunologia , Fatores de Tempo , Resultado do Tratamento , Virulência/genética , Eliminação de Partículas Virais , Adulto Jovem , Zoonoses/transmissão , Zoonoses/virologia
7.
Nucleic Acids Res ; 52(6): 3406-3418, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38412313

RESUMO

RNA helicases function as versatile enzymes primarily responsible for remodeling RNA secondary structures and organizing ribonucleoprotein complexes. In our study, we conducted a systematic analysis of the helicase-related activities of Escherichia coli HrpA and presented the structures of both its apo form and its complex bound with both conventional and non-canonical DNAs. Our findings reveal that HrpA exhibits NTP hydrolysis activity and binds to ssDNA and ssRNA in distinct sequence-dependent manners. While the helicase core plays an essential role in unwinding RNA/RNA and RNA/DNA duplexes, the N-terminal extension in HrpA, consisting of three helices referred to as the APHB domain, is crucial for ssDNA binding and RNA/DNA duplex unwinding. Importantly, the APHB domain is implicated in binding to non-canonical DNA structures such as G-quadruplex and i-motif, and this report presents the first solved i-motif-helicase complex. This research not only provides comprehensive insights into the multifaceted roles of HrpA as an RNA helicase but also establishes a foundation for further investigations into the recognition and functional implications of i-motif DNA structures in various biological processes.


Assuntos
DNA Helicases , Proteínas de Escherichia coli , Sequência de Aminoácidos , DNA/química , DNA Helicases/metabolismo , DNA de Cadeia Simples/genética , Escherichia coli/metabolismo , RNA/química , RNA Helicases/genética , Proteínas de Escherichia coli/metabolismo
8.
Genome Res ; 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948368

RESUMO

Understanding the genetic mechanisms of phenotypic variation in hybrids between domestic animals and their wild relatives may aid germplasm innovation. Here, we report the high-quality genome assemblies of a male Pamir argali (O ammon polii, 2n = 56), a female Tibetan sheep (O aries, 2n = 54), and a male hybrid of Pamir argali and domestic sheep, and the high-throughput sequencing of 425 ovine animals, including the hybrids of argali and domestic sheep. We detected genomic synteny between Chromosome 2 of sheep and two acrocentric chromosomes of argali. We revealed consistent satellite repeats around the chromosome breakpoints, which could have resulted in chromosome fusion. We observed many more hybrids with karyotype 2n = 54 than with 2n = 55, which could be explained by the selfish centromeres, the possible decreased rate of normal/balanced sperm, and the increased incidence of early pregnancy loss in the aneuploid ewes or rams. We identified genes and variants associated with important morphological and production traits (e.g., body weight, cannon circumference, hip height, and tail length) that show significant variations. We revealed a strong selective signature at the mutation (c.334C > A, p.G112W) in TBXT and confirmed its association with tail length among sheep populations of wide geographic and genetic origins. We produced an intercross population of 110 F2 offspring with varied number of vertebrae and validated the causal mutation by whole-genome association analysis. We verified its function using CRISPR-Cas9 genome editing. Our results provide insights into chromosomal speciation and phenotypic evolution and a foundation of genetic variants for the breeding of sheep and other animals.

9.
Bioinformatics ; 40(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38963312

RESUMO

MOTIVATION: Gene regulatory networks (GRNs) are vital tools for delineating regulatory relationships between transcription factors and their target genes. The boom in computational biology and various biotechnologies has made inferring GRNs from multi-omics data a hot topic. However, when networks are constructed from gene expression data, they often suffer from false-positive problem due to the transitive effects of correlation. The presence of spurious noise edges obscures the real gene interactions, which makes downstream analyses, such as detecting gene function modules and predicting disease-related genes, difficult and inefficient. Therefore, there is an urgent and compelling need to develop network denoising methods to improve the accuracy of GRN inference. RESULTS: In this study, we proposed a novel network denoising method named REverse Network Diffusion On Random walks (RENDOR). RENDOR is designed to enhance the accuracy of GRNs afflicted by indirect effects. RENDOR takes noisy networks as input, models higher-order indirect interactions between genes by transitive closure, eliminates false-positive effects using the inverse network diffusion method, and produces refined networks as output. We conducted a comparative assessment of GRN inference accuracy before and after denoising on simulated networks and real GRNs. Our results emphasized that the network derived from RENDOR more accurately and effectively captures gene interactions. This study demonstrates the significance of removing network indirect noise and highlights the effectiveness of the proposed method in enhancing the signal-to-noise ratio of noisy networks. AVAILABILITY AND IMPLEMENTATION: The R package RENDOR is provided at https://github.com/Wu-Lab/RENDOR and other source code and data are available at https://github.com/Wu-Lab/RENDOR-reproduce.


Assuntos
Algoritmos , Biologia Computacional , Redes Reguladoras de Genes , Biologia Computacional/métodos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
10.
Blood ; 142(10): 903-917, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37319434

RESUMO

The bone marrow microenvironment (BMM) can regulate leukemia stem cells (LSCs) via secreted factors. Increasing evidence suggests that dissecting the mechanisms by which the BMM maintains LSCs may lead to the development of effective therapies for the eradication of leukemia. Inhibitor of DNA binding 1 (ID1), a key transcriptional regulator in LSCs, previously identified by us, controls cytokine production in the BMM, but the role of ID1 in acute myeloid leukemia (AML) BMM remains obscure. Here, we report that ID1 is highly expressed in the BMM of patients with AML, especially in BM mesenchymal stem cells, and that the high expression of ID1 in the AML BMM is induced by BMP6, secreted from AML cells. Knocking out ID1 in mesenchymal cells significantly suppresses the proliferation of cocultured AML cells. Loss of Id1 in the BMM results in impaired AML progression in AML mouse models. Mechanistically, we found that Id1 deficiency significantly reduces SP1 protein levels in mesenchymal cells cocultured with AML cells. Using ID1-interactome analysis, we found that ID1 interacts with RNF4, an E3 ubiquitin ligase, and causes a decrease in SP1 ubiquitination. Disrupting the ID1-RNF4 interaction via truncation in mesenchymal cells significantly reduces SP1 protein levels and delays AML cell proliferation. We identify that the target of Sp1, Angptl7, is the primary differentially expression protein factor in Id1-deficient BM supernatant fluid to regulate AML progression in mice. Our study highlights the critical role of ID1 in the AML BMM and aids the development of therapeutic strategies for AML.


Assuntos
Proteína 7 Semelhante a Angiopoietina , Proteína 1 Inibidora de Diferenciação , Leucemia Mieloide Aguda , Animais , Camundongos , Proteína 7 Semelhante a Angiopoietina/genética , Proteína 7 Semelhante a Angiopoietina/metabolismo , Medula Óssea/metabolismo , Modelos Animais de Doenças , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Microambiente Tumoral , Humanos , Proteína 1 Inibidora de Diferenciação/metabolismo
11.
Cell Mol Life Sci ; 81(1): 336, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120751

RESUMO

Preeclampsia (PE) is a life-threatening pregnancy-specific complication with controversial mechanisms and no effective treatment except delivery is available. Currently, increasing researchers suggested that PE shares pathophysiologic features with protein misfolding/aggregation disorders, such as Alzheimer disease (AD). Evidences have proposed defective autophagy as a potential source of protein aggregation in PE. Endoplasmic reticulum-selective autophagy (ER-phagy) plays a critical role in clearing misfolded proteins and maintaining ER homeostasis. However, its roles in the molecular pathology of PE remain unclear. We found that lncRNA DUXAP8 was upregulated in preeclamptic placentae and significantly correlated with clinical indicators. DUXAP8 specifically binds to PCBP2 and inhibits its ubiquitination-mediated degradation, and decreased levels of PCBP2 reversed the activation effect of DUXAP8 overexpression on AKT/mTOR signaling pathway. Function experiments showed that DUXAP8 overexpression inhibited trophoblastic proliferation, migration, and invasion of HTR-8/SVneo and JAR cells. Moreover, pathological accumulation of swollen and lytic ER (endoplasmic reticulum) was observed in DUXAP8-overexpressed HTR8/SVneo cells and PE placental villus trophoblast cells, which suggesting that ER clearance ability is impaired. Further studies found that DUXAP8 overexpression impaired ER-phagy and caused protein aggregation medicated by reduced FAM134B and LC3II expression (key proteins involved in ER-phagy) via activating AKT/mTOR signaling pathway. The increased level of FAM134B significantly reversed the inhibitory effect of DUXAP8 overexpression on the proliferation, migration, and invasion of trophoblasts. In vivo, DUXAP8 overexpression through tail vein injection of adenovirus induced PE-like phenotypes in pregnant rats accompanied with activated AKT/mTOR signaling, decreased expression of FAM134B and LC3-II proteins and increased protein aggregation in placental tissues. Our study reveals the important role of lncRNA DUXAP8 in regulating trophoblast biological behaviors through FAM134B-mediated ER-phagy, providing a new theoretical basis for understanding the pathogenesis of PE.


Assuntos
Autofagia , Retículo Endoplasmático , Pré-Eclâmpsia , Proteínas Proto-Oncogênicas c-akt , RNA Longo não Codificante , Transdução de Sinais , Serina-Treonina Quinases TOR , Trofoblastos , Adulto , Animais , Feminino , Humanos , Gravidez , Ratos , Autofagia/genética , Linhagem Celular , Movimento Celular/genética , Proliferação de Células/genética , Retículo Endoplasmático/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Serina-Treonina Quinases TOR/metabolismo , Trofoblastos/metabolismo , Trofoblastos/patologia , Masculino
12.
Nano Lett ; 24(20): 6165-6173, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717317

RESUMO

Dynamic therapies, which induce reactive oxygen species (ROS) production in situ through endogenous and exogenous stimulation, are emerging as attractive options for tumor treatment. However, the complexity of the tumor substantially limits the efficacy of individual stimulus-triggered dynamic therapy. Herein, bimetallic copper and ruthenium (Cu@Ru) core-shell nanoparticles are applied for endo-exogenous stimulation-triggered dynamic therapy. The electronic structure of Cu@Ru is regulated through the ligand effects to improve the adsorption level for small molecules, such as water and oxygen. The core-shell heterojunction interface can rapidly separate electron-hole pairs generated by ultrasound and light stimulation, which initiate reactions with adsorbed small molecules, thus enhancing ROS generation. This synergistically complements tumor treatment together with ROS from endogenous stimulation. In vitro and in vivo experiments demonstrate that Cu@Ru nanoparticles can induce tumor cell apoptosis and ferroptosis through generated ROS. This study provides a new paradigm for endo-exogenous stimulation-based synergistic tumor treatment.


Assuntos
Apoptose , Cobre , Espécies Reativas de Oxigênio , Rutênio , Cobre/química , Cobre/farmacologia , Humanos , Espécies Reativas de Oxigênio/metabolismo , Animais , Rutênio/química , Rutênio/farmacologia , Apoptose/efeitos dos fármacos , Camundongos , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Ligantes , Ferroptose/efeitos dos fármacos , Antineoplásicos/química , Antineoplásicos/farmacologia
13.
J Neurosci ; 43(49): 8547-8561, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37802656

RESUMO

Dysfunctional gene expression in nociceptive pathways plays a critical role in the development and maintenance of neuropathic pain. Super enhancers (SEs), composed of a large cluster of transcriptional enhancers, are emerging as new players in the regulation of gene expression. However, whether SEs participate in nociceptive responses remains unknown. Here, we report a spinal-specific SE (SS-SE) that regulates chronic constriction injury (CCI)-induced neuropathic pain by driving Ntmt1 and Prrx2 transcription in dorsal horn neurons. Peripheral nerve injury significantly enhanced the activity of SS-SE and increased the expression of NTMT1 and PRRX2 in the dorsal horn of male mice in a bromodomain-containing protein 4 (BRD4)-dependent manner. Both intrathecal administration of a pharmacological BRD4 inhibitor JQ1 and CRISPR-Cas9-mediated SE deletion abolished the increased NTMT1 and PRRX2 in CCI mice and attenuated their nociceptive hypersensitivities. Furthermore, knocking down Ntmt1 or Prrx2 with siRNA suppressed the injury-induced elevation of phosphorylated extracellular-signal-regulated kinase (p-ERK) and glial fibrillary acidic protein (GFAP) expression in the dorsal horn and alleviated neuropathic pain behaviors. Mimicking the increase in spinal Ntmt1 or Prrx2 in naive mice increased p-ERK and GFAP expression and led to the genesis of neuropathic pain-like behavior. These results redefine our understanding of the regulation of pain-related genes and demonstrate that BRD4-driven increases in SS-SE activity is responsible for the genesis of neuropathic pain through the governance of NTMT1 and PRRX2 expression in dorsal horn neurons. Our findings highlight the therapeutic potential of BRD4 inhibitors for the treatment of neuropathic pain.SIGNIFICANCE STATEMENT SEs drive gene expression by recruiting master transcription factors, cofactors, and RNA polymerase, but their role in the development of neuropathic pain remains unknown. Here, we report that the activity of an SS-SE, located upstream of the genes Ntmt1 and Prrx2, was elevated in the dorsal horn of mice with neuropathic pain. SS-SE contributes to the genesis of neuropathic pain by driving expression of Ntmt1 and Prrx2 Both inhibition of SS-SE with a pharmacological BRD4 inhibitor and genetic deletion of SS-SE attenuated pain hypersensitivities. This study suggests an effective and novel therapeutic strategy for neuropathic pain.


Assuntos
Hipersensibilidade , Neuralgia , Ratos , Masculino , Camundongos , Animais , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Hiperalgesia/metabolismo , Ratos Sprague-Dawley , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neuralgia/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hipersensibilidade/metabolismo
14.
PLoS Med ; 21(5): e1004389, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38728364

RESUMO

BACKGROUND: It remains unclear whether intensification of the chemotherapy backbone in tandem with an anti-EGFR can confer superior clinical outcomes in a cohort of RAS/BRAF wild-type colorectal cancer (CRC) patients with initially unresectable colorectal liver metastases (CRLM). To that end, we sought to comparatively evaluate the efficacy and safety of cetuximab plus FOLFOXIRI (triplet arm) versus cetuximab plus FOLFOX (doublet arm) as a conversion regimen (i.e., unresectable to resectable) in CRC patients with unresectable CRLM. METHODS AND FINDINGS: This open-label, randomized clinical trial was conducted from April 2018 to December 2022 in 7 medical centers across China, enrolling 146 RAS/BRAF wild-type CRC patients with initially unresectable CRLM. A stratified blocked randomization method was utilized to assign patients (1:1) to either the cetuximab plus FOLFOXIRI (n = 72) or cetuximab plus FOLFOX (n = 74) treatment arms. Stratification factors were tumor location (left versus right) and resectability (technically unresectable versus ≥5 metastases). The primary outcome was the objective response rate (ORR). Secondary outcomes included the median depth of tumor response (DpR), early tumor shrinkage (ETS), R0 resection rate, progression-free survival (PFS), overall survival (not mature at the time of analysis), and safety profile. Radiological tumor evaluations were conducted by radiologists blinded to the group allocation. Primary efficacy analyses were conducted based on the intention-to-treat population, while safety analyses were performed on patients who received at least 1 line of chemotherapy. A total of 14 patients (9.6%) were lost to follow-up (9 in the doublet arm and 5 in the triplet arm). The ORR was comparable following adjustment for stratification factors, with 84.7% versus 79.7% in the triplet and doublet arms, respectively (odds ratio [OR] 0.70; 95% confidence intervals [CI] [0.30, 1.67], Chi-square p = 0.42). Moreover, the ETS rate showed no significant difference between the triplet and doublet arms (80.6% (58/72) versus 77.0% (57/74), OR 0.82, 95% CI [0.37, 1.83], Chi-square p = 0.63). Although median DpR was higher in the triplet therapy group (59.6%, interquartile range [IQR], [50.0, 69.7] versus 55.0%, IQR [42.8, 63.8], Mann-Whitney p = 0.039), the R0/R1 resection rate with or without radiofrequency ablation/stereotactic body radiation therapy was comparable with 54.2% (39/72) of patients in the triplet arm versus 52.7% (39/74) in the doublet arm. At a median follow-up of 26.2 months (IQR [12.8, 40.5]), the median PFS was 11.8 months in the triplet arm versus 13.4 months in the doublet arm (hazard ratio [HR] 0.74, 95% CI [0.50, 1.11], Log-rank p = 0.14). Grade ≥ 3 events were reported in 47.2% (35/74) of patients in the doublet arm and 55.9% (38/68) of patients in the triplet arm. The triplet arm was associated with a higher incidence of grade ≥ 3 neutropenia (44.1% versus 27.0%, p = 0.03) and diarrhea (5.9% versus 0%, p = 0.03). The primary limitations of the study encompass the inherent bias in subjective surgical decisions regarding resection feasibility, as well as the lack of a centralized assessment for ORR and resection. CONCLUSIONS: The combination of cetuximab with FOLFOXIRI did not significantly improve ORR compared to cetuximab plus FOLFOX. Despite achieving an enhanced DpR, this improvement did not translate into improved R0 resection rates or PFS. Moreover, the triplet arm was associated with an increase in treatment-related toxicity. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03493048.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Camptotecina , Cetuximab , Neoplasias Colorretais , Fluoruracila , Leucovorina , Neoplasias Hepáticas , Compostos Organoplatínicos , Proteínas Proto-Oncogênicas B-raf , Humanos , Cetuximab/administração & dosagem , Cetuximab/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Masculino , Pessoa de Meia-Idade , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/tratamento farmacológico , Feminino , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Leucovorina/uso terapêutico , Leucovorina/administração & dosagem , Fluoruracila/uso terapêutico , Fluoruracila/administração & dosagem , Compostos Organoplatínicos/uso terapêutico , Compostos Organoplatínicos/administração & dosagem , Proteínas Proto-Oncogênicas B-raf/genética , Idoso , Adulto , Camptotecina/análogos & derivados , Camptotecina/uso terapêutico , Camptotecina/administração & dosagem , Resultado do Tratamento , Proteínas ras/genética
15.
EMBO J ; 39(24): e105896, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33140861

RESUMO

COVID-19 is characterized by dysregulated immune responses, metabolic dysfunction and adverse effects on the function of multiple organs. To understand host responses to COVID-19 pathophysiology, we combined transcriptomics, proteomics, and metabolomics to identify molecular markers in peripheral blood and plasma samples of 66 COVID-19-infected patients experiencing a range of disease severities and 17 healthy controls. A large number of expressed genes, proteins, metabolites, and extracellular RNAs (exRNAs) exhibit strong associations with various clinical parameters. Multiple sets of tissue-specific proteins and exRNAs varied significantly in both mild and severe patients suggesting a potential impact on tissue function. Chronic activation of neutrophils, IFN-I signaling, and a high level of inflammatory cytokines were observed in patients with severe disease progression. In contrast, COVID-19-infected patients experiencing milder disease symptoms showed robust T-cell responses. Finally, we identified genes, proteins, and exRNAs as potential biomarkers that might assist in predicting the prognosis of SARS-CoV-2 infection. These data refine our understanding of the pathophysiology and clinical progress of COVID-19.


Assuntos
COVID-19/sangue , COVID-19/patologia , Biomarcadores/sangue , COVID-19/imunologia , COVID-19/virologia , Feminino , Genômica/métodos , Humanos , Lipoproteínas/metabolismo , Masculino , Metabolômica/métodos , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Carga Viral
16.
J Clin Immunol ; 44(3): 80, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38462559

RESUMO

OBJECTIVE: We sought to explore the prevalence of type I interferon-neutralizing antibodies in a Chinese cohort and its clinical implications during the Omicron variant wave of SARS-CoV-2. METHODS: Type I interferon (IFN) autoantibodies possessing neutralizing capabilities were identified using luciferase assays. The capacity of the autoantibodies for in vitro interference with antiviral activity of IFN was assessed by using a SARS-CoV-2 replicon system. An analysis of the demographic and clinical profiles of patients exhibiting neutralizing antibodies was also conducted. RESULTS: In this cohort, 11.8% of severe/critical cases exhibited the existence of type I IFN-neutralizing antibodies, specifically targeting IFN-α2, IFN-ω, or both, with an elderly male patient tendency. Notably, these antibodies exerted a pronounced inhibitory effect on the antiviral activity of IFN against SARS-CoV-2 under controlled in vitro conditions. Furthermore, a noteworthy correlation was discerned between the presence of these neutralizing antibodies and critical clinical parameters, including C-reactive protein (CRP) levels, D-dimer levels, and lymphocyte counts. CONCLUSION: The presence of type I IFN-neutralizing antibodies is a pervasive risk factor for severe/critical COVID-19 in the Chinese population.


Assuntos
COVID-19 , Interferon Tipo I , Idoso , Humanos , Masculino , Autoanticorpos , COVID-19/epidemiologia , SARS-CoV-2 , Prevalência , China/epidemiologia , Anticorpos Neutralizantes , Antivirais
17.
Cancer Immunol Immunother ; 73(8): 143, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832955

RESUMO

This study investigates the role of USP47, a deubiquitinating enzyme, in the tumor microenvironment and its impact on antitumor immune responses. Analysis of TCGA database revealed distinct expression patterns of USP47 in various tumor tissues and normal tissues. Prostate adenocarcinoma showed significant downregulation of USP47 compared to normal tissue. Correlation analysis demonstrated a positive association between USP47 expression levels and infiltrating CD8+ T cells, neutrophils, and macrophages, while showing a negative correlation with NKT cells. Furthermore, using Usp47 knockout mice, we observed a slower tumor growth rate and reduced tumor burden. The absence of USP47 led to increased infiltration of immune cells, including neutrophils, macrophages, NK cells, NKT cells, and T cells. Additionally, USP47 deficiency resulted in enhanced activation of cytotoxic T lymphocytes (CTLs) and altered T cell subsets within the tumor microenvironment. These findings suggest that USP47 plays a critical role in modulating the tumor microenvironment and promoting antitumor immune responses, highlighting its potential as a therapeutic target in prostate cancer.


Assuntos
Linfócitos do Interstício Tumoral , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Microambiente Tumoral
18.
Small ; : e2400587, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837673

RESUMO

Precise integration of diverse therapeutic approaches into nanomaterials is the key to the development of multimodal synergistic cancer therapy. In this work, tadpole-like carbon nanotubes with Fe nanoparticle encapsulated at the head and Zn single-atom anchored on the body (Fe@CNT-Zn) is precisely designed and facilely prepared via one-pot carbonization. In vitro studies revealed the integration of chemotherapy (CT), chemodynamic therapy (CDT), photothermal therapy (PTT), and photodynamic therapy (PDT) in Fe@CNT-Zn as well as the near-infrared light (NIR)-responsive cascade therapeutic efficacy. Furthermore, in vivo studies demonstrated the NIR-triggered cascade-amplifying synergistic cancer therapy in a B16 tumor-bearing mouse model. The results not only showcased the Fe@CNT-Zn as a potential tetramodal therapeutic platform, but also demonstrated a proof-of-concept on metal-organic framework-based "one stone for multiple birds" strategy for in situ functionalization of carbon materials.

19.
Small ; 20(11): e2307396, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37888791

RESUMO

Rechargeable magnesium batteries (RMBs) are considered as one of the most promising candidates for next-generation batteries. However, the popularization of RMBs is seriously plagued due to the lack of suitable non-nucleophilic electrolytes and the passivation of Mg anode. Herein, a novel non-nucleophilic electrolyte is developed by introducing (s)-1-methoxy-2-propylamine (M4) into themagnesium aluminum chloride complex (MACC)-like electrolyte. The as-synthesizes Mg(AlCl4 )2 -IL-DME-M4 electrolyte enables robust reversible cycling of Mg plating/stripping with low overpotential, high anodic stability, and ionic conductivity (8.56 mS cm-1 ). These features should be mainly attributed to the in situ formation of an MgF2 containing Mg2+ -conducting interphase, which dramatically suppresses the passivation and parasitic reaction of Mg anode with electrolyte. Remarkably, the Mg/S batteries assemble with as-synthesize electrolyte and a new type MoS2 @CMK/S cathode deliver unprecedented electrochemical performance. Specifically, the Mg/S battery exhibited the highest reversible capacity up to 1210 mAh g-1 at 0.1 C, excellent rate capability and satisfactory long-term cycling stability with a reversible capacity of 370 mAh g-1 (coulombic efficiency of ≈100%) at 1.0 C for 600 cycles. The study findings provide a novel strategy and inspiration for designing efficient non-nucleophilic Mg electrolyte and suitable sulfur-host materials for practical Mg/S battery applications.

20.
Brief Bioinform ; 23(6)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36274239

RESUMO

Gene-based transcriptome analysis, such as differential expression analysis, can identify the key factors causing disease production, cell differentiation and other biological processes. However, this is not enough because basic life activities are mainly driven by the interactions between genes. Although there have been already many differential network inference methods for identifying the differential gene interactions, currently, most studies still only use the information of nodes in the network for downstream analyses. To investigate the insight into differential gene interactions, we should perform interaction-based transcriptome analysis (IBTA) instead of gene-based analysis after obtaining the differential networks. In this paper, we illustrated a workflow of IBTA by developing a Co-hub Differential Network inference (CDN) algorithm, and a novel interaction-based metric, pivot APC2. We confirmed the superior performance of CDN through simulation experiments compared with other popular differential network inference algorithms. Furthermore, three case studies are given using colorectal cancer, COVID-19 and triple-negative breast cancer datasets to demonstrate the ability of our interaction-based analytical process to uncover causative mechanisms.


Assuntos
COVID-19 , Redes Reguladoras de Genes , Humanos , Perfilação da Expressão Gênica/métodos , Transcriptoma , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA