Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Infect Dis ; 230(3): e524-e535, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-38412342

RESUMO

BACKGROUND: Coinfection of human immunodeficiency virus type 1 (HIV-1) is the most significant risk factor for tuberculosis (TB). The immune responses of the lung are essential to restrict the growth of Mycobacterium tuberculosis and avoid the emergence of the disease. Nevertheless, there is still limited knowledge about the local immune response in people with HIV-1-TB coinfection. METHODS: We employed single-cell RNA sequencing (scRNA-seq) on bronchoalveolar lavage fluid from 9 individuals with HIV-1-TB coinfection and 10 with pulmonary TB. RESULTS: A total of 19 058 cells were grouped into 4 major cell types: myeloid cells, T/natural killer (NK) cells, B cells, and epithelial cells. The myeloid cells and T/NK cells were further divided into 10 and 11 subsets, respectively. The proportions of dendritic cell subsets, CD4+ T cells, and NK cells were lower in the HIV-1-TB coinfection group compared to the TB group, while the frequency of CD8+ T cells was higher. Additionally, we identified numerous differentially expressed genes between the CD4+ and CD8+ T-cell subsets between the 2 groups. CONCLUSIONS: HIV-1 infection not only affects the abundance of immune cells in the lungs but also alters their functions in patients with pulmonary TB.


Assuntos
Líquido da Lavagem Broncoalveolar , Coinfecção , Infecções por HIV , HIV-1 , Análise de Célula Única , Tuberculose Pulmonar , Humanos , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/complicações , Infecções por HIV/complicações , Infecções por HIV/imunologia , Coinfecção/virologia , Coinfecção/imunologia , Coinfecção/microbiologia , HIV-1/imunologia , Masculino , Adulto , Líquido da Lavagem Broncoalveolar/microbiologia , Líquido da Lavagem Broncoalveolar/virologia , Líquido da Lavagem Broncoalveolar/imunologia , Feminino , Mycobacterium tuberculosis/imunologia , Pessoa de Meia-Idade , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Matadoras Naturais/imunologia , Pulmão/microbiologia , Pulmão/imunologia , Pulmão/virologia
2.
BMC Public Health ; 24(1): 1333, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760740

RESUMO

BACKGROUND: Previous studies have shown the association between tuberculosis (TB) and meteorological factors/air pollutants. However, little information is available for people living with HIV/AIDS (PLWHA), who are highly susceptible to TB. METHOD: Data regarding TB cases in PLWHA from 2014 to2020 were collected from the HIV antiviral therapy cohort in Guangxi, China. Meteorological and air pollutants data for the same period were obtained from the China Meteorological Science Data Sharing Service Network and Department of Ecology and Environment of Guangxi. A distribution lag non-linear model (DLNM) was used to evaluate the effects of meteorological factors and air pollutant exposure on the risk of TB in PLWHA. RESULTS: A total of 2087 new or re-active TB cases were collected, which had a significant seasonal and periodic distribution. Compared with the median values, the maximum cumulative relative risk (RR) for TB in PLWHA was 0.663 (95% confidence interval [CI]: 0.507-0.866, lag 4 weeks) for a 5-unit increase in temperature, and 1.478 (95% CI: 1.116-1.957, lag 4 weeks) for a 2-unit increase in precipitation. However, neither wind speed nor PM10 had a significant cumulative lag effect. Extreme analysis demonstrated that the hot effect (RR = 0.638, 95%CI: 0.425-0.958, lag 4 weeks), the rainy effect (RR = 0.285, 95%CI: 0.135-0.599, lag 4 weeks), and the rainless effect (RR = 0.552, 95%CI: 0.322-0.947, lag 4 weeks) reduced the risk of TB. Furthermore, in the CD4(+) T cells < 200 cells/µL subgroup, temperature, precipitation, and PM10 had a significant hysteretic effect on TB incidence, while temperature and precipitation had a significant cumulative lag effect. However, these effects were not observed in the CD4(+) T cells ≥ 200 cells/µL subgroup. CONCLUSION: For PLWHA in subtropical Guangxi, temperature and precipitation had a significant cumulative effect on TB incidence among PLWHA, while air pollutants had little effect. Moreover, the influence of meteorological factors on the incidence of TB also depends on the immune status of PLWHA.


Assuntos
Poluentes Atmosféricos , Infecções por HIV , Conceitos Meteorológicos , Tuberculose , Humanos , China/epidemiologia , Incidência , Tuberculose/epidemiologia , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/efeitos adversos , Infecções por HIV/epidemiologia , Feminino , Masculino , Adulto , Síndrome da Imunodeficiência Adquirida/epidemiologia , Pessoa de Meia-Idade
3.
Glia ; 71(8): 1985-2004, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37186402

RESUMO

Neural repair is highly influenced by reactive astrocytes. Atypical cadherin Celsr2 regulates neuron development and axon regeneration, while its role in glial cells remains unexplored. In this study, we show that Celsr2 is highly expressed in spinal astrocytes of adult mice, and knockout of Celsr2 results in reactive astrocytes with longer protrusions preferentially orientated towards lesion borders in culture scratch assay and injured spinal cord, and elevation of total and active Cdc42 and Rac1 protein in western blots. Inactivation of Celsr2 enhances calcium influx in reactive astrocytes in time-lapse imaging. Morphological phenotypes of cultured Celsr2-/- astrocytes are rescued by Cdc42 or Rac1 inhibitors. Following spinal cord injury (SCI), Celsr2-/- mice exhibit smaller lesion cavity and glial scar, enhanced fiber regeneration, weaker microglial response, and improved functional recovery than control animals. Similar phenotypes are found in mice with conditional knockout of Celsr2 in astrocytes. In Celsr2-/- mice, astrocyte phenotype is changed and neuroinflammation is alleviated after injury. Inhibiting Cdc42/Rac1 activities compromises astrocyte polarization and the improvement of neural repair and functional recovery in Celsr2-/- mice with SCI. In conclusion, Celsr2 regulates morphological polarization and functional phenotype of reactive astrocytes and inactivating Celsr2 is a potential therapeutic strategy for neural repair.


Assuntos
Astrócitos , Traumatismos da Medula Espinal , Camundongos , Animais , Astrócitos/metabolismo , Axônios/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos da Medula Espinal/metabolismo , Fenótipo , Caderinas/metabolismo
4.
Eur J Clin Microbiol Infect Dis ; 42(2): 129-140, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36445622

RESUMO

The burden of extrapulmonary tuberculosis (EPTB) has gradually increased in recent years, but not enough epidemiological data is available from central Guangxi. To better understand the epidemiology of EPTB in central Guangxi and identify risk factors associated with them, we retrospectively investigated the epidemiology of tuberculosis (TB), especially EPTB, among patients admitted to the Chest Hospital of Guangxi Zhuang Autonomous Region between 2016 and 2021. We excluded those infected with both pulmonary tuberculosis (PTB) and EPTB, reported the proportion and incidence of PTB or EPTB, and compared the demographic characteristics and risk factors of EPTB and PTB cases using univariate and multivariate logistic regression models. Among 30,893 TB patients, 67.25% (20,774) had PTB and 32.75% (10,119) had EPTB. Among EPTB, pleural, skeletal, lymphatic, pericardial, meningeal, genitourinary, intestinal, and peritoneal TB accounted for 49.44%, 27.20%, 8.55%, 4.39%, 3.36%, 1.48%, 0.87%, and 0.79%, respectively. Patients who were younger (age < 25), from rural areas, Zhuang and other ethnic groups, and diagnosed with anemia and HIV infection were more likely to develop EPTB. However, patients with diabetes and COPD were less likely to have EPTB. From 2016 to 2021, the proportion of PTB cases decreased from 69.73 to 64.07%. The percentage of EPTB cases increased from 30.27 to 35.93%, with the largest increase in skeletal TB from 21.48 to 34.13%. The epidemiology and risk factors of EPTB in central Guangxi are different from those of PTB. The incidence of EPTB is increasing and further studies are needed to determine the reasons for it.


Assuntos
Infecções por HIV , Tuberculose Extrapulmonar , Tuberculose Pulmonar , Tuberculose , Humanos , Infecções por HIV/epidemiologia , Estudos Retrospectivos , China/epidemiologia , Tuberculose/epidemiologia , Tuberculose/diagnóstico , Tuberculose Pulmonar/epidemiologia
5.
J Cell Physiol ; 237(1): 466-479, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34553373

RESUMO

RASSF4 (Ras-association domain family 4) is a protein-coding gene, regarded as a tumor suppressor regulated by DNA methylation. However, RASSF4 acts as a "Janus" in cell fate: death and survival. This review article focuses on the regulatory mechanisms of RASSF4 on cell death and cell survival and puts forward a comprehensive analysis of the relevant signaling pathways. The participation of RASSF4 in the regulation of intracellular store-operated Ca2+ entry also affects cell survival. Moreover, the mechanism of inducing abnormal expression of RASSF4 was summarized. We highlight recent advances in our knowledge of RASSF4 function in the development of cancer and other clinical diseases, which may provide insight into the controversial functions of RASSF4 and its potential application in disease therapy.


Assuntos
Metilação de DNA , Proteínas Supressoras de Tumor , Metilação de DNA/genética , Transdução de Sinais , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
6.
Med Res Rev ; 41(3): 1751-1774, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33368430

RESUMO

Obesity syndromes, characterized by abnormal lipid, cholesterol, and glucose metabolism, are detrimental to human health and cause many diseases, including obesity and type II diabetes. Increasing evidence has shown that long noncoding RNA (lncRNA), transcripts longer than 200 nucleotides that are not translated into proteins, play an important role in regulating abnormal metabolism in obesity syndromes. For the first time, we systematically summarize how lncRNA is involved in complex obesity metabolic syndromes, including the regulation of lipid, cholesterol, and glucose metabolism. Moreover, we discuss lncRNA involvement in food intake that mediates obesity syndromes. Furthermore, this review might shed new light on a lncRNA-based strategy for the prevention and treatment of obesity syndromes. Recent investigations support that lncRNA is a novel molecular target of obesity syndromes and should be emphasized. Namely, lncRNA plays a crucial role in the development of obesity syndrome process. Various lncRNAs are involved in the process of lipid, cholesterol, and glucose metabolism by regulating gene transcription, signaling pathway, and epigenetic modification of metabolism-related genes, proteins, and enzymes. Food intake could also induce abnormal expression of lncRNA associated with obesity syndrome, especially high-fat diet. Notably, some nanomolecules and natural extracts may target lncRNAs, associated with obesity syndrome, as a potential treatment for obesity syndromes.


Assuntos
Obesidade , RNA Longo não Codificante , Colesterol/metabolismo , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos , Obesidade/genética , Obesidade/terapia , RNA Longo não Codificante/genética
7.
Med Res Rev ; 40(5): 1973-2018, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32525219

RESUMO

The cancer mortality rate of hepatocellular carcinoma (HCC) is the second highest in the world and the therapeutic options are limited. The incidence of this deadly cancer is rising at an alarming rate because of the high degree of resistance to chemo- and radiotherapy, lack of proper, and adequate vaccination to hepatitis B, and lack of consciousness and knowledge about the disease itself and the lifestyle of the people. DNA methylation and DNA methylation-induced epigenetic alterations, due to their potential reversibility, open the access to develop novel biomarkers and therapeutics for HCC. The contribution to these epigenetic changes in HCC development still has not been thoroughly summarized. Thus, it is necessary to better understand the new molecular targets of HCC epigenetics in HCC diagnosis, prevention, and treatment. This review elaborates on recent key findings regarding molecular biomarkers for HCC early diagnosis, prognosis, and treatment. Currently emerging epigenetic drugs for the treatment of HCC are summarized. In addition, combining epigenetic drugs with nonepigenetic drugs for HCC treatment is also mentioned. The molecular mechanisms of DNA methylation-mediated HCC resistance are reviewed, providing some insights into the difficulty of treating liver cancer and anticancer drug development.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Metilação de DNA , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Prognóstico
8.
Toxicol Appl Pharmacol ; 403: 115166, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32738333

RESUMO

Deoxynivalenol (DON) is an unavoidable contaminant in human food, animal feeds, and agricultural products. Growth retardation in children caused by extensive DON pollution has become a global problem that cannot be ignored. Previous studies have shown that DON causes stunting in children through intestinal dysfunction, insulin-like growth factor-1 (IGF-1) axis disorder and peptide YY (PYY). Galanin-like peptide (GALP) is an important growth regulator, but its role in DON-induced growth retardation is unclear. In this study, we report the important role of GALP during DON-induced growth inhibition in the rat pituitary tumour cell line GH3. DON was found to increase the expression of GALP through hypomethylationin the promoter region of the GALP gene and upregulate the expression of proinflammatory factors, while downregulate the expression of growth hormone (GH). Furthermore, GALP overexpression promoted proinflammatory cytokines, including TNF-α, IL-1ß, IL-11 and IL-6, and further reduced cell viability and cell proliferation, while the inhibitory effect of GALP was the opposite. The expression of GALP and insulin like growth factor binding protein acid labile subunit (IGFALS) showed the opposite trend, which was the potential reason for the regulation of cell proliferation by GALP. In addition, GALP has anti-apoptotic effects, which could not eliminate the inflammatory damage of cells, thus aggravating cell growth inhibition. The present findings provide new mechanistic insights into the toxicity of DON-induced growth retardation and suggest a therapeutic potential of GALP in DON-related diseases.


Assuntos
Epigênese Genética/efeitos dos fármacos , Galanina/metabolismo , Hipófise/citologia , Tricotecenos/farmacologia , Regulação para Cima/efeitos dos fármacos , Animais , Apoptose , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Galanina/genética , Inativação Gênica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Ratos
9.
Arch Toxicol ; 94(11): 3645-3669, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32910237

RESUMO

T-2 toxin is the most toxic trichothecene mycotoxin, and it exerts potent toxic effects, including immunotoxicity, neurotoxicity, and reproductive toxicity. Recently, several novel metabolites, including 3',4'-dihydroxy-T-2 toxin and 4',4'-dihydroxy-T-2 toxin, have been uncovered. The enzymes CYP3A4 and carboxylesterase contribute to T-2 toxin metabolism, with 3'-hydroxy-T-2 toxin and HT-2 toxin as the corresponding primary products. Modified forms of T-2 toxin, including T-2-3-glucoside, exert their immunotoxic effects by signaling through JAK/STAT but not MAPK. T-2-3-glucoside results from hydrolyzation of the corresponding parent mycotoxin and other metabolites by the intestinal microbiota, which leads to enhanced toxicity. Increasing evidence has shown that autophagy, hypoxia-inducible factors, and exosomes are involved in T-2 toxin-induced immunotoxicity. Autophagy promotes the immunosuppression induced by T-2 toxin, and a complex crosstalk between apoptosis and autophagy exists. Very recently, "immune evasion" activity was reported to be associated with this toxin; this activity is initiated inside cells and allows pathogens to escape the host immune response. Moreover, T-2 toxin has the potential to trigger hypoxia in cells, which is related to activation of hypoxia-inducible factor and the release of exosomes, leading to immunotoxicity. Based on the data from a series of human exposure studies, free T-2 toxin, HT-2 toxin, and HT-2-4-glucuronide should be considered human T-2 toxin biomarkers in the urine. The present review focuses on novel findings related to the metabolism, immunotoxicity, and human exposure assessment of T-2 toxin and its modified forms. In particular, the immunotoxicity mechanisms of T-2 toxin and the toxicity mechanism of its modified form, as well as human T-2 toxin biomarkers, are discussed. This work will contribute to an improved understanding of the immunotoxicity mechanism of T-2 toxin and its modified forms.


Assuntos
Exposição Ambiental/análise , Toxina T-2/metabolismo , Toxina T-2/toxicidade , Animais , Apoptose , Autofagia , Biomarcadores , Hipóxia Celular , Humanos , Transdução de Sinais , Toxina T-2/análogos & derivados
10.
Drug Metab Rev ; 49(4): 395-437, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28766385

RESUMO

Paracetamol (APAP) is one of the most widely used and popular over-the-counter analgesic and antipyretic drugs in the world when used at therapeutic doses. APAP overdose can cause severe liver injury, liver necrosis and kidney damage in human beings and animals. Many studies indicate that oxidative stress is involved in the various toxicities associated with APAP, and various antioxidants were evaluated to investigate their protective roles against APAP-induced liver and kidney toxicities. To date, almost no review has addressed the APAP toxicity in relation to oxidative stress. This review updates the research conducted over the past decades into the production of reactive oxygen species (ROS), reactive nitrogen species (RNS), and oxidative stress as a result of APAP treatments, and ultimately their correlation with the toxicity and metabolism of APAP. The metabolism of APAP involves various CYP450 enzymes, through which oxidative stress might occur, and such metabolic factors are reviewed within. The therapeutics of a variety of compounds against APAP-induced organ damage based on their anti-oxidative effects is also discussed, in order to further understand the role of oxidative stress in APAP-induced toxicity. This review will throw new light on the critical roles of oxidative stress in APAP-induced toxicity, as well as on the contradictions and blind spots that still exist in the understanding of APAP toxicity, the cellular effects in terms of organ injury and cell signaling pathways, and finally strategies to help remedy such against oxidative damage.


Assuntos
Acetaminofen/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Analgésicos não Narcóticos/toxicidade , Animais , Antioxidantes/farmacologia , Antipiréticos/toxicidade , Relação Dose-Resposta a Droga , Overdose de Drogas , Humanos , Espécies Reativas de Oxigênio/metabolismo
11.
Anim Nutr ; 16: 251-266, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38362519

RESUMO

T-2 toxin is one of the most widespread and toxic fungal toxins in food and feed. It can cause gastrointestinal toxicity, hepatotoxicity, immunotoxicity, reproductive toxicity, neurotoxicity, and nephrotoxicity in humans and animals. T-2 toxin is physicochemically stable and does not readily degrade during food and feed processing. Therefore, suppressing T-2 toxin-induced organ toxicity through antidotes is an urgent issue. Protective agents against the organ toxicity of T-2 toxin have been recorded widely in the literature, but these protective agents and their molecular mechanisms of detoxification have not been comprehensively summarized. In this review, we provide an overview of the various protective agents to T-2 toxin and the molecular mechanisms underlying the detoxification effects. Targeting appropriate targets to antagonize T-2 toxin toxicity is also an important option. This review will provide essential guidance and strategies for the better application and development of T-2 toxin antidotes specific for organ toxicity in the future.

12.
Toxicology ; 508: 153923, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39147090

RESUMO

Deoxynivalenol (DON), one of the most common mycotoxins in food and feed, can cause acute and chronic liver injury, posing a serious health risk to humans and animals. One of the important manifestations of DON-induced hepatotoxicity is ferroptosis. It has been reported that CYP2E1 can mediated ferroptosis, but the role of DON-induced CYP2E1 in DON-induced ferroptosis in hepatocytes is unknown. In the present study, we observed that DON significantly increased the expression of CYP2E1 and decreased the expression of the ferroptosis inhibitory proteins GPX4 and SLC7A11, as well as GCLC and NQO1. This resulted in an increase in the levels of cell lipid ROS and FeII, 4-HNE, which ultimately led to cell ferroptosis. Notably, knockdown of CYP2E1 resulted in an increase in DON-induced low levels of GPX4 and SLC7A11, a decrease in DON-induced high levels of lipid ROS, FeII and cell secreted 4-HNE, thus ameliorating cell ferroptosis. Moreover, the ferroptosis inhibitor ferrostatin-1 was observed to antagonise the cell growth inhibitory toxicity induced by DON exposure. This was achieved by blocking the increase in lipid ROS and FeII overload, which in turn reduced the extent of ferroptosis and increased IGF-1 protein expression. In conclusion, the present study demonstrated that CYP2E1 played a regulatory role in DON-induced ferroptosis in hepatocytes. Targeting ferroptosis may prove an effective strategy for alleviating DON-induced cell growth retardation toxicity. These findings provided a potential target and strategies to mitigate DON hepatotoxicity in the future.


Assuntos
Citocromo P-450 CYP2E1 , Ferroptose , Hepatócitos , Espécies Reativas de Oxigênio , Tricotecenos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Ferroptose/efeitos dos fármacos , Tricotecenos/toxicidade , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/genética , Espécies Reativas de Oxigênio/metabolismo , Humanos , Animais , Células Hep G2 , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo
13.
J Agric Food Chem ; 72(33): 18670-18681, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39112929

RESUMO

Multiple compounds are related to the development of liver injury, such as toxins, drugs, and environmental pollutants. Although there are reports that the T-2 toxin can cause liver injury, its toxic mechanism remains unclear, which further impedes the development of effective antidotes. In this study, CRISPR-Cas9 genome-wide screening technology was used to identify transformation-related protein 53 inducible nuclear protein 1 (trp53inp1) as a toxic target of the T-2 toxin. Mechanism studies have shown that the T-2 toxin induced pyroptosis of macrophages (J774A.1 cells) by activating the trp53inp1/NF-κB/NLRP3/GSDMD-N pathway, leading to a subacute liver injury. Also, the new drug berberine (BER) identified through virtual screening significantly alleviated the subacute liver injury by competitively binding trp53inp1 via His224; the effect was better than those of the positive control drugs N-acetylcysteine (NAC) and disulfiram (DSF). In summary, the above results indicate that trp53inp1 is a key target for T-2 toxin to induce subacute liver injury and that inhibiting macrophage pyroptosis is a new method for treating liver injury. In addition, this study provides a new method and strategy for the discovery of key disease targets and the search for effective drugs.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Toxina T-2 , Piroptose/efeitos dos fármacos , Animais , Camundongos , Toxina T-2/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Linhagem Celular , Masculino , Berberina/farmacologia , Camundongos Endogâmicos C57BL , Fígado/efeitos dos fármacos , Fígado/metabolismo
14.
J Ethnopharmacol ; 334: 118518, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38964628

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Salvia miltiorrhiza Bunge (S. miltiorrhiza) is an important Traditional Chinese herbal Medicine (TCM) used to treat cardio-cerebrovascular diseases. Based on the pharmacodynamic substance of S. miltiorrhiza, the aim of present study was to investigate the underlying mechanism of S. miltiorrhiza against cardiac fibrosis (CF) through a systematic network pharmacology approach, molecular docking and dynamics simulation as well as experimental investigation in vitro. MATERIALS AND METHODS: A systematic pharmacological analysis was conducted using the Traditional Chinese Medicine Pharmacology (TCMSP) database to screen the effective chemical components of S. miltiorrhiza, then the corresponding potential target genes of the compounds were obtained by the Swiss Target Prediction and TCMSP databases. Meanwhile, GeneCards, DisGeNET, OMIM, and TTD disease databases were used to screen CF targets, and a protein-protein interaction (PPI) network of drug-disease targets was constructed on S. miltiorrhiza/CF targets by Search Tool for the Retrieval of Interacting Genes/Proteins (STING) database. After that, the component-disease-target network was constructed by software Cytoscape 3.7. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed for the intersection targets between drug and disease. The relationship between active ingredient of S. miltiorrhiza and disease targets of CF was assessed via molecular docking and molecular dynamics simulation. Subsequently, the underlying mechanism of the hub compound on CF was experimentally investigated in vitro. RESULTS: 206 corresponding targets to effective chemical components from S. miltiorrhiza were determined, and among them, there were 82 targets that overlapped with targets of CF. Further, through PPI analysis, AKT1 and GSK3ß were the hub targets, and which were both enriched in the PI3K/AKT signaling pathway, it was the sub-pathways of the lipid and atherosclerosis pathway. Subsequently, compound-disease-genes-pathways diagram is constructed, apigenin (APi) was a top ingredients and AKT1 (51) and GSK3ß (22) were the hub genes according to the degree value. The results of molecular docking and dynamics simulation showed that APi has strong affinities with AKT and GSK3ß. The results of cell experiments showed that APi inhibited cells viability, proliferation, proteins expression of α-SMA and collagen I/III, phosphorylation of AKT1 and GSK3ß in MCFs induced by TGFß1. CONCLUSION: Through a systematic network pharmacology approach, molecular docking and dynamics simulation, and confirmed by in vitro cell experiments, these results indicated that APi interacts with AKT and GSK3ß to disrupt the phosphorylation of AKT and GSK3ß, thereby inhibiting the proliferation and differentiation of MCFs induced by TGFß1, which providing new insights into the pharmacological mechanism of S. miltiorrhiza in the treatment of CF.


Assuntos
Apigenina , Diferenciação Celular , Proliferação de Células , Glicogênio Sintase Quinase 3 beta , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Animais , Apigenina/farmacologia , Apigenina/química , Diferenciação Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Mapas de Interação de Proteínas , Ratos , Farmacologia em Rede , Simulação de Dinâmica Molecular , Linhagem Celular , Humanos
15.
Front Microbiol ; 15: 1349715, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495513

RESUMO

Background: Resistance to anti-tuberculous drugs is a major challenge in the treatment of tuberculosis (TB). We aimed to evaluate the clinical availability of nanopore-based targeted next-generation sequencing (NanoTNGS) for the diagnosis of drug-resistant tuberculosis (DR-TB). Methods: This study enrolled 253 patients with suspected DR-TB from six hospitals. The diagnostic efficacy of NanoTNGS for detecting Mycobacterium tuberculosis and its susceptibility or resistance to first- and second-line anti-tuberculosis drugs was assessed by comparing conventional phenotypic drug susceptibility testing (pDST) and Xpert MTB/RIF assays. NanoTNGS can be performed within 12 hours from DNA extraction to the result delivery. Results: NanoTNGS showed a remarkable concordance rate of 99.44% (179/180) with the culture assay for identifying the Mycobacterium tuberculosis complex. The sensitivity of NanoTNGS for detecting drug resistance was 93.53% for rifampicin, 89.72% for isoniazid, 85.45% for ethambutol, 74.00% for streptomycin, and 88.89% for fluoroquinolones. Specificities ranged from 83.33% to 100% for all drugs tested. Sensitivity for rifampicin-resistant tuberculosis using NanoTNGS increased by 9.73% compared to Xpert MTB/RIF. The most common mutations were S531L (codon in E. coli) in the rpoB gene, S315T in the katG gene, and M306V in the embB gene, conferring resistance to rifampicin, isoniazid, and ethambutol, respectively. In addition, mutations in the pncA gene, potentially contributing to pyrazinamide resistance, were detected in 32 patients. Other prevalent variants, including D94G in the gyrA gene and K43R in the rpsL gene, conferred resistance to fluoroquinolones and streptomycin, respectively. Furthermore, the rv0678 R94Q mutation was detected in one sample, indicating potential resistance to bedaquiline. Conclusion: NanoTNGS rapidly and accurately identifies resistance or susceptibility to anti-TB drugs, outperforming traditional methods. Clinical implementation of the technique can recognize DR-TB in time and provide guidance for choosing appropriate antituberculosis agents.

16.
Mol Brain ; 17(1): 53, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107846

RESUMO

Human embryonic stem cells and human induced pluripotent stem cells may be used to create 3D tissues called brain organoids. They duplicate the physiological and pathological characteristics of human brain tissue more faithfully in terms of both structure and function, and they more precisely resemble the morphology and cellular structure of the human embryonic brain. This makes them valuable models for both drug screening and in vitro studies on the development of the human brain and associated disorders. The technical breakthroughs enabled by brain organoids have a significant impact on the research of different brain regions, brain development and sickness, the connections between the brain and other tissues and organs, and brain evolution. This article discusses the development of brain organoids, their use in diabetes research, and their progress.


Assuntos
Encéfalo , Diabetes Mellitus , Organoides , Humanos , Organoides/patologia , Encéfalo/patologia , Diabetes Mellitus/patologia , Animais , Células-Tronco Pluripotentes Induzidas/citologia , Pesquisa Biomédica
17.
Sci Total Environ ; 923: 171544, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38453062

RESUMO

There has been a consistent upward trend in ground-level ozone (O3) concentration in China. People living with HIV (PLWH) may be more vulnerable to the health impacts of O3 exposure due to their immunosuppressed state. This study aims to investigate the association between ambient O3 exposure and mortality among PLWH, as well as the potential exacerbating effects of a decreased CD4+ T cell level. Daily maximum 8-hour O3 concentrations were assigned to 7270 PLWH at a county level in Guangxi, China. Every 10-unit increase in ambient O3 concentration was associated with a significant rise in all-cause mortality ranging from 7.3 % to 28.7 % and a significant rise in AIDS-related mortality ranging from 8.4 % to 14.5 %. When PLWH had a higher CD4+ count (≥350 cells/µL), elevated O3 concentration was associated with increased blood CD4+ count at lag0 [percent change with 95 % confidence interval, 0.20(0.00, 0.40)], lag1 [0.26(0.06, 0.47)], and lag2 [0.23(0.03, 0.44)]; however, an opposite association was observed when CD4+ count was <350 cells/µL for half-year average [-2.45(-4.71, -0.14)] and yearly average [-3.42(-5.51, -1.29)] of O3 exposure. The association of O3 exposure with all-cause and AIDS-related mortality was more prominent among those with higher CD4+ count. Exploratory analysis revealed possible associations between O3 exposure and respiratory infections and clinical symptoms. These findings suggest potential synergistic effects between a compromised immune status and elevated O3 exposure levels on mortality risk among PLWH. Ambient O3 exposure should be considered as an emerging mortality risk factor for PLWH in the era of antiretroviral therapy, requiring further attention from researchers and healthcare professionals.


Assuntos
Síndrome da Imunodeficiência Adquirida , Poluentes Atmosféricos , Poluição do Ar , Ozônio , Humanos , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Estudos Longitudinais , Linfócitos T , China/epidemiologia , Ozônio/efeitos adversos , Ozônio/análise , Linfócitos T CD4-Positivos/química , Exposição Ambiental/análise , Material Particulado/análise
18.
Food Chem Toxicol ; 182: 114121, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890761

RESUMO

Deoxynivalenol (DON) is one of the most prevalent mycotoxins in feed, which causes organ toxicity in animals. Therefore, reducing DON-induced organ toxicity can now be accomplished effectively using protective agents. This review provides an overview of multiple studies on a wide range of protective agents and their molecular mechanisms against DON organ toxicity. Protective agents include plant extracts, yeast products, bacteria, peptides, enzymes, H2, oligosaccharides, amino acids, adsorbents, vitamins and selenium. Among these, biological detoxification of DON using microorganisms to reduce the toxicity of DON without affecting the growth performance of pigs may be the most promising detoxification strategy. This paper also evaluates future developments related to DON detoxification and discusses the detoxification role and application potential of protective agents. This paper provides new perspectives for future research and development of safe and effective feed additives.


Assuntos
Micotoxinas , Tricotecenos , Suínos , Animais , Tricotecenos/metabolismo , Micotoxinas/análise , Bactérias/metabolismo , Substâncias Protetoras/farmacologia , Substâncias Protetoras/metabolismo , Ração Animal/análise , Contaminação de Alimentos/análise
19.
Toxicology ; 494: 153589, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37419272

RESUMO

Deoxynivalenol (DON) is one of the most serious mycotoxins that contaminate food and feed, causing hepatocyte death. However, there is still a lack of understanding regarding the new cell death modalities that explain DON-induced hepatocyte toxicity. Ferroptosis is an iron-dependent type of cell death. The aim of this study was to explore the role of ferroptosis in DON-exposed HepG2 cytotoxicity and the antagonistic effect of resveratrol (Res) on its toxicity, and the underlying molecular mechanisms. HepG2 cells were treated with Res (8 µM) or/and DON (0.4 µM) for 12 h. We examined cell viability, cell proliferation, expression of ferroptosis-related genes, levels of lipid peroxidation and Fe(II). The results revealed that DON reduced the expression levels of GPX4, SLC7A11, GCLC, NQO1, and Nrf2 while promoting the expression of TFR1, GSH depletion, accumulation of MDA and total ROS. DON enhanced production of 4-HNE, lipid ROS and Fe(II) overload, resulting in ferroptosis. However, pretreatment with Res reversed these changes, attenuating DON-induced ferroptosis, improving cell viability and cell proliferation. Importantly, Res prevented Erastin and RSL3-induced ferroptosis, suggesting that Res exerted an anti-ferroptosis effect by activating SLC7A11-GSH-GPX4 signaling pathways. In summary, Res ameliorated DON-induced ferroptosis in HepG2 cells. This study provides a new perspective on the mechanism of DON-induced hepatotoxicity formation, and Res may be an effective drug to alleviate DON-induced hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Humanos , Células Hep G2 , Resveratrol/farmacologia , Espécies Reativas de Oxigênio , Compostos Ferrosos
20.
mBio ; 14(4): e0027223, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37382506

RESUMO

Drug-resistant tuberculosis (TB) poses a major threat to global TB control; consequently, there is an urgent need to develop novel anti-TB drugs or strategies. Host-directed therapy (HDT) is emerging as an effective treatment strategy, especially for drug-resistant TB. This study evaluated the effects of berbamine (BBM), a bisbenzylisoquinoline alkaloid, on mycobacterial growth in macrophages. BBM inhibited intracellular Mycobacterium tuberculosis (Mtb) growth by promoting autophagy and silencing ATG5, partially abolishing the inhibitory effect. In addition, BBM increased intracellular reactive oxygen species (ROS), while the antioxidant N-acetyl-L-cysteine (NAC) abolished BBM-induced autophagy and the ability to inhibit Mtb survival. Furthermore, the increased intracellular Ca2+ concentration induced by BBM was regulated by ROS, and BAPTA-AM, an intracellular Ca2+-chelating agent, could block ROS-mediated autophagy and Mtb clearance. Finally, BBM could inhibit the survival of drug-resistant Mtb. Collectively, these findings provide evidence that BBM, a Food and Drug Administration (FDA)-approved drug, could effectively clear drug-sensitive and -resistant Mtb through regulating ROS/Ca2+ axis-mediated autophagy and has potential as an HDT candidate for TB therapy. IMPORTANCE It is urgent to develop novel treatment strategies against drug-resistant TB, and HDT provides a promising approach to fight drug-resistant TB by repurposing old drugs. Our studies demonstrate, for the first time, that BBM, an FDA-approved drug, not only potently inhibits intracellular drug-sensitive Mtb growth but also restricts drug-resistant Mtb by promoting macrophage autophagy. Mechanistically, BBM activates macrophage autophagy by regulating the ROS/Ca2+ axis. In conclusion, BBM could be considered as an HDT candidate and may contribute to improving the outcomes or shortening the treatment course of drug-resistant TB.


Assuntos
Benzilisoquinolinas , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Espécies Reativas de Oxigênio , Macrófagos/microbiologia , Benzilisoquinolinas/farmacologia , Autofagia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA