Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.377
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 182(1): 245-261.e17, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32649877

RESUMO

Genomic studies of lung adenocarcinoma (LUAD) have advanced our understanding of the disease's biology and accelerated targeted therapy. However, the proteomic characteristics of LUAD remain poorly understood. We carried out a comprehensive proteomics analysis of 103 cases of LUAD in Chinese patients. Integrative analysis of proteome, phosphoproteome, transcriptome, and whole-exome sequencing data revealed cancer-associated characteristics, such as tumor-associated protein variants, distinct proteomics features, and clinical outcomes in patients at an early stage or with EGFR and TP53 mutations. Proteome-based stratification of LUAD revealed three subtypes (S-I, S-II, and S-III) related to different clinical and molecular features. Further, we nominated potential drug targets and validated the plasma protein level of HSP 90ß as a potential prognostic biomarker for LUAD in an independent cohort. Our integrative proteomics analysis enables a more comprehensive understanding of the molecular landscape of LUAD and offers an opportunity for more precise diagnosis and treatment.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Proteômica , Adenocarcinoma de Pulmão/genética , Povo Asiático/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Sistemas de Liberação de Medicamentos , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade , Mutação/genética , Estadiamento de Neoplasias , Fosfoproteínas/metabolismo , Análise de Componente Principal , Prognóstico , Proteoma/metabolismo , Resultado do Tratamento , Proteína Supressora de Tumor p53/genética
2.
Cell ; 177(4): 806-819, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31051105

RESUMO

Over the last several decades, an impressive array of advanced microscopic and analytical tools, such as single-particle tracking and nanoscopic fluorescence correlation spectroscopy, has been applied to characterize the lateral organization and mobility of components in the plasma membrane. Such analysis can tell researchers about the local dynamic composition and structure of membranes and is important for predicting the outcome of membrane-based reactions. However, owing to the unresolved complexity of the membrane and the structures peripheral to it, identification of the detailed molecular origin of the interactions that regulate the organization and mobility of the membrane has not proceeded quickly. This Perspective presents an overview of how cell-surface structure may give rise to the types of lateral mobility that are observed and some potentially fruitful future directions to elucidate the architecture of these structures in more molecular detail.


Assuntos
Membrana Celular/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Membrana Celular/fisiologia , Bicamadas Lipídicas/química , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/química , Proteínas de Membrana/fisiologia
3.
Nature ; 627(8003): 301-305, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448596

RESUMO

Solid-state Li-S batteries (SSLSBs) are made of low-cost and abundant materials free of supply chain concerns. Owing to their high theoretical energy densities, they are highly desirable for electric vehicles1-3. However, the development of SSLSBs has been historically plagued by the insulating nature of sulfur4,5 and the poor interfacial contacts induced by its large volume change during cycling6,7, impeding charge transfer among different solid components. Here we report an S9.3I molecular crystal with I2 inserted in the crystalline sulfur structure, which shows a semiconductor-level electrical conductivity (approximately 5.9 × 10-7 S cm-1) at 25 °C; an 11-order-of-magnitude increase over sulfur itself. Iodine introduces new states into the band gap of sulfur and promotes the formation of reactive polysulfides during electrochemical cycling. Further, the material features a low melting point of around 65 °C, which enables repairing of damaged interfaces due to cycling by periodical remelting of the cathode material. As a result, an Li-S9.3I battery demonstrates 400 stable cycles with a specific capacity retention of 87%. The design of this conductive, low-melting-point sulfur iodide material represents a substantial advancement in the chemistry of sulfur materials, and opens the door to the practical realization of SSLSBs.

4.
Mol Cell ; 82(15): 2844-2857.e10, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35662396

RESUMO

Lysosomes are the main organelles in macrophages for killing invading bacteria. However, the precise mechanism underlying lysosomal biogenesis upon bacterial infection remains enigmatic. We demonstrate here that LPS stimulation increases IRG1-dependent itaconate production, which promotes lysosomal biogenesis by activating the transcription factor, TFEB. Mechanistically, itaconate directly alkylates human TFEB at cysteine 212 (Cys270 in mice) to induce its nuclear localization by antagonizing mTOR-mediated phosphorylation and cytosolic retention. Functionally, abrogation of itaconate synthesis by IRG1/Irg1 knockout or expression of an alkylation-deficient TFEB mutant impairs the antibacterial ability of macrophages in vitro. Furthermore, knockin mice harboring an alkylation-deficient TFEB mutant display elevated susceptibility to Salmonella typhimurium infection, whereas in vivo treatment of OI, a cell-permeable itaconate derivative, limits inflammation. Our study identifies itaconate as an endogenous metabolite that functions as a lysosomal inducer in macrophages in response to bacterial infection, implying the potential therapeutic utility of itaconate in treating human bacterial infection.


Assuntos
Lisossomos , Succinatos , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Humanos , Imunidade Inata , Lisossomos/metabolismo , Camundongos , Succinatos/metabolismo , Succinatos/farmacologia
5.
Nature ; 612(7938): 123-131, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36385530

RESUMO

Aggregates of medin amyloid (a fragment of the protein MFG-E8, also known as lactadherin) are found in the vasculature of almost all humans over 50 years of age1,2, making it the most common amyloid currently known. We recently reported that medin also aggregates in blood vessels of ageing wild-type mice, causing cerebrovascular dysfunction3. Here we demonstrate in amyloid-ß precursor protein (APP) transgenic mice and in patients with Alzheimer's disease that medin co-localizes with vascular amyloid-ß deposits, and that in mice, medin deficiency reduces vascular amyloid-ß deposition by half. Moreover, in both the mouse and human brain, MFG-E8 is highly enriched in the vasculature and both MFG-E8 and medin levels increase with the severity of vascular amyloid-ß burden. Additionally, analysing data from 566 individuals in the ROSMAP cohort, we find that patients with Alzheimer's disease have higher MFGE8 expression levels, which are attributable to vascular cells and are associated with increased measures of cognitive decline, independent of plaque and tau pathology. Mechanistically, we demonstrate that medin interacts directly with amyloid-ß to promote its aggregation, as medin forms heterologous fibrils with amyloid-ß, affects amyloid-ß fibril structure, and cross-seeds amyloid-ß aggregation both in vitro and in vivo. Thus, medin could be a therapeutic target for prevention of vascular damage and cognitive decline resulting from amyloid-ß deposition in the blood vessels of the brain.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide , Animais , Humanos , Camundongos , Pessoa de Meia-Idade , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Disfunção Cognitiva , Camundongos Transgênicos , Placa Amiloide/metabolismo , Proteínas tau/metabolismo
6.
EMBO J ; 42(2): e111268, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36408830

RESUMO

Reprogramming of lipid metabolism is emerging as a hallmark of cancer, yet involvement of specific fatty acids (FA) species and related enzymes in tumorigenesis remains unclear. While previous studies have focused on involvement of long-chain fatty acids (LCFAs) including palmitate in cancer, little attention has been paid to the role of very long-chain fatty acids (VLCFAs). Here, we show that depletion of acetyl-CoA carboxylase (ACC1), a critical enzyme involved in the biosynthesis of fatty acids, inhibits both de novo synthesis and elongation of VLCFAs in human cancer cells. ACC1 depletion markedly reduces cellular VLCFA but only marginally influences LCFA levels, including palmitate that can be nutritionally available. Therefore, tumor growth is specifically susceptible to regulation of VLCFAs. We further demonstrate that VLCFA deficiency results in a significant decrease in ceramides as well as downstream glucosylceramides and sphingomyelins, which impairs mitochondrial morphology and renders cancer cells sensitive to oxidative stress and cell death. Taken together, our study highlights that VLCFAs are selectively required for cancer cell survival and reveals a potential strategy to suppress tumor growth.


Assuntos
Neoplasias , Estearatos , Humanos , Estearatos/metabolismo , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo , Palmitatos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo
7.
Immunity ; 46(3): 446-456, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28314593

RESUMO

Zika virus (ZIKV) has become a public health threat due to its global transmission and link to severe congenital disorders. The host immune responses to ZIKV infection have not been fully elucidated, and effective therapeutics are not currently available. Herein, we demonstrated that cholesterol-25-hydroxylase (CH25H) was induced in response to ZIKV infection and that its enzymatic product, 25-hydroxycholesterol (25HC), was a critical mediator of host protection against ZIKV. Synthetic 25HC addition inhibited ZIKV infection in vitro by blocking viral entry, and treatment with 25HC reduced viremia and conferred protection against ZIKV in mice and rhesus macaques. 25HC suppressed ZIKV infection and reduced tissue damage in human cortical organoids and the embryonic brain of the ZIKV-induced mouse microcephaly model. Our findings highlight the protective role of CH25H during ZIKV infection and the potential use of 25HC as a natural antiviral agent to combat ZIKV infection and prevent ZIKV-associated outcomes, such as microcephaly.


Assuntos
Antivirais/farmacologia , Hidroxicolesteróis/farmacologia , Microcefalia/virologia , Infecção por Zika virus/complicações , Animais , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Imunofluorescência , Humanos , Macaca mulatta , Camundongos , Microscopia Confocal , Internalização do Vírus/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Zika virus/fisiologia
8.
Nature ; 585(7823): 63-67, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32879503

RESUMO

Rechargeable lithium-ion batteries with high energy density that can be safely charged and discharged at high rates are desirable for electrified transportation and other applications1-3. However, the sub-optimal intercalation potentials of current anodes result in a trade-off between energy density, power and safety. Here we report that disordered rock salt4,5 Li3+xV2O5 can be used as a fast-charging anode that can reversibly cycle two lithium ions at an average voltage of about 0.6 volts versus a Li/Li+ reference electrode. The increased potential compared to graphite6,7 reduces the likelihood of lithium metal plating if proper charging controls are used, alleviating a major safety concern (short-circuiting related to Li dendrite growth). In addition, a lithium-ion battery with a disordered rock salt Li3V2O5 anode yields a cell voltage much higher than does a battery using a commercial fast-charging lithium titanate anode or other intercalation anode candidates (Li3VO4 and LiV0.5Ti0.5S2)8,9. Further, disordered rock salt Li3V2O5 can perform over 1,000 charge-discharge cycles with negligible capacity decay and exhibits exceptional rate capability, delivering over 40 per cent of its capacity in 20 seconds. We attribute the low voltage and high rate capability of disordered rock salt Li3V2O5 to a redistributive lithium intercalation mechanism with low energy barriers revealed via ab initio calculations. This low-potential, high-rate intercalation reaction can be used to identify other metal oxide anodes for fast-charging, long-life lithium-ion batteries.

9.
Mol Cell ; 72(6): 1021-1034.e4, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30472193

RESUMO

The dynamic transcriptional regulation and interactions of human germlines and surrounding somatic cells during folliculogenesis remain unknown. Using RNA sequencing (RNA-seq) analysis of human oocytes and corresponding granulosa cells (GCs) spanning five follicular stages, we revealed unique features in transcriptional machinery, transcription factor networks, and reciprocal interactions in human oocytes and GCs that displayed developmental-stage-specific expression patterns. Notably, we identified specific gene signatures of two cell types in particular developmental stage that may reflect developmental competency and ovarian reserve. Additionally, we uncovered key pathways that may concert germline-somatic interactions and drive the transition of primordial-to-primary follicle, which represents follicle activation. Thus, our work provides key insights into the crucial features of the transcriptional regulation in the stepwise folliculogenesis and offers important clues for improving follicle recruitment in vivo and restoring fully competent oocytes in vitro.


Assuntos
Comunicação Celular/genética , Células da Granulosa/fisiologia , Oócitos/fisiologia , Folículo Ovariano/fisiologia , Reserva Ovariana/genética , Transcriptoma , Adulto , Animais , Biologia Computacional , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Humanos , Camundongos , Folículo Ovariano/citologia , Transdução de Sinais/genética , Análise de Célula Única , Especificidade da Espécie , Transcrição Gênica , Adulto Jovem
10.
Proc Natl Acad Sci U S A ; 120(41): e2310714120, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37782794

RESUMO

The future application of Li metal batteries (LMBs) at scale demands electrolytes that endow improved performance under fast-charging and low-temperature operating conditions. Recent works indicate that desolvation kinetics of Li+ plays a crucial role in enabling such behavior. However, the modulation of this process has typically been achieved through inducing qualitative degrees of ion pairing into the system. In this work, we find that a more quantitative control of the ion pairing is crucial to minimizing the desolvation penalty at the electrified interface and thus the reversibility of the Li metal anode under kinetic strain. This effect is demonstrated in localized electrolytes based on strongly and weakly bound ether solvents that allow for the deconvolution of solvation chemistry and structure. Unexpectedly, we find that maximum degrees of ion pairing are suboptimal for ultralow temperature and high-rate operation and that reversibility is substantially improved via slight local dilution away from the saturation point. Further, we find that at the optimum degree of ion pairing for each system, weakly bound solvents still produce superior behavior. The impact of these structure and chemistry effects on charge transfer are then explicitly resolved via experimental and computational analyses. Lastly, we demonstrate that the locally optimized diethyl ether-based localized-high-concentration electrolytes supports kinetic strained operating conditions, including cycling down to -60 °C and 20-min fast charging in LMB full cells. This work demonstrates that explicit, quantitative optimization of the Li+ solvation state is necessary for developing LMB electrolytes capable of low-temperature and high-rate operation.

11.
Proc Natl Acad Sci U S A ; 120(11): e2219523120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36893269

RESUMO

The continuous evolution of SARS-CoV-2 variants complicates efforts to combat the ongoing pandemic, underscoring the need for a dynamic platform for the rapid development of pan-viral variant therapeutics. Oligonucleotide therapeutics are enhancing the treatment of numerous diseases with unprecedented potency, duration of effect, and safety. Through the systematic screening of hundreds of oligonucleotide sequences, we identified fully chemically stabilized siRNAs and ASOs that target regions of the SARS-CoV-2 genome conserved in all variants of concern, including delta and omicron. We successively evaluated candidates in cellular reporter assays, followed by viral inhibition in cell culture, with eventual testing of leads for in vivo antiviral activity in the lung. Previous attempts to deliver therapeutic oligonucleotides to the lung have met with only modest success. Here, we report the development of a platform for identifying and generating potent, chemically modified multimeric siRNAs bioavailable in the lung after local intranasal and intratracheal delivery. The optimized divalent siRNAs showed robust antiviral activity in human cells and mouse models of SARS-CoV-2 infection and represent a new paradigm for antiviral therapeutic development for current and future pandemics.


Assuntos
COVID-19 , Humanos , Animais , Camundongos , RNA Interferente Pequeno/genética , COVID-19/terapia , SARS-CoV-2/genética , Antivirais/farmacologia , Antivirais/uso terapêutico , Oligonucleotídeos , Pulmão
12.
Blood ; 142(10): 903-917, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37319434

RESUMO

The bone marrow microenvironment (BMM) can regulate leukemia stem cells (LSCs) via secreted factors. Increasing evidence suggests that dissecting the mechanisms by which the BMM maintains LSCs may lead to the development of effective therapies for the eradication of leukemia. Inhibitor of DNA binding 1 (ID1), a key transcriptional regulator in LSCs, previously identified by us, controls cytokine production in the BMM, but the role of ID1 in acute myeloid leukemia (AML) BMM remains obscure. Here, we report that ID1 is highly expressed in the BMM of patients with AML, especially in BM mesenchymal stem cells, and that the high expression of ID1 in the AML BMM is induced by BMP6, secreted from AML cells. Knocking out ID1 in mesenchymal cells significantly suppresses the proliferation of cocultured AML cells. Loss of Id1 in the BMM results in impaired AML progression in AML mouse models. Mechanistically, we found that Id1 deficiency significantly reduces SP1 protein levels in mesenchymal cells cocultured with AML cells. Using ID1-interactome analysis, we found that ID1 interacts with RNF4, an E3 ubiquitin ligase, and causes a decrease in SP1 ubiquitination. Disrupting the ID1-RNF4 interaction via truncation in mesenchymal cells significantly reduces SP1 protein levels and delays AML cell proliferation. We identify that the target of Sp1, Angptl7, is the primary differentially expression protein factor in Id1-deficient BM supernatant fluid to regulate AML progression in mice. Our study highlights the critical role of ID1 in the AML BMM and aids the development of therapeutic strategies for AML.


Assuntos
Proteína 7 Semelhante a Angiopoietina , Proteína 1 Inibidora de Diferenciação , Leucemia Mieloide Aguda , Animais , Camundongos , Proteína 7 Semelhante a Angiopoietina/genética , Proteína 7 Semelhante a Angiopoietina/metabolismo , Medula Óssea/metabolismo , Modelos Animais de Doenças , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Microambiente Tumoral , Humanos , Proteína 1 Inibidora de Diferenciação/metabolismo
13.
Stem Cells ; 42(2): 146-157, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37952119

RESUMO

The expression of large conductance calcium-activated potassium channels (BK channels) in adipose tissue has been identified for years. BK channel deletion can improve metabolism in vivo, but the relative mechanisms remain unclear. Here, we examined the effects of BK channels on the differentiation of adipose-derived stem cells (ADSCs) and the related mechanisms. BKα and ß1 subunits were expressed on adipocytes. We found that both deletion of the KCNMA1 gene, encoding the pore forming α subunit of BK channels, and the BK channel inhibitor paxilline increased the expression of key genes in the peroxisome proliferator activated receptor (PPAR) pathway and promoted adipogenetic differentiation of ADSCs. We also observed that the MAPK-ERK pathway participates in BK channel deficiency-promoted adipogenic differentiation of ADSCs and that ERK inhibitors blocked the differentiation-promoting effect of BK channel deficiency. Hyperplasia of adipocytes is considered beneficial for metabolic health. These results indicate that BK channels play an important role in adipose hyperplasia by regulating the differentiation of ADSCs and may become an important target for studying the pathogenesis and treatment strategies of metabolic disorder-related diseases.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta , Sistema de Sinalização das MAP Quinases , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Hiperplasia , Diferenciação Celular , Adipócitos/metabolismo
14.
EMBO Rep ; 24(5): e55903, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36975049

RESUMO

In the arthropod gut, commensal microbiota maintain the immune deficiency (Imd)/Relish pathway for expression of antimicrobial peptides, whereas pathogenic bacteria induce dual oxidase 2 (Duox2) for production of extracellular microbicidal reactive oxygen species (ROS). The Imd/Relish pathway and the Duox2/ROS system are regarded as independent systems. Here, we report that these two systems are bridged by the tumor necrosis factor (TNF) ortholog PcEiger in the red swamp crayfish Procambarus clarkii. PcEiger expression is induced by commensal bacteria or the Imd/Relish pathway. PcEiger knockdown alters bacterial abundance and community composition due to variations in the oxidative status of the intestine. PcEiger induces Duox2 expression and ROS production by regulating the activity of the transcription factor Atf2. Moreover, PcEiger mediates regulation of the Duox2/ROS system by commensal bacteria and the Imd/Relish pathway. Our findings suggest that the Imd/Relish pathway regulates the Duox2/ROS system via PcEiger in P. clarkii, and they provide insights into the crosstalk between these two important mechanisms for arthropod intestinal immunity.


Assuntos
Astacoidea , Fatores de Transcrição , Animais , Astacoidea/metabolismo , Astacoidea/microbiologia , Espécies Reativas de Oxigênio , Oxidases Duais/genética , Fatores de Transcrição/metabolismo , Intestinos , Imunidade Inata
15.
Exp Cell Res ; 436(2): 113924, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280435

RESUMO

Cervical cancer (CC), as a common female malignant tumor in the world, is an important risk factor endangering women's health worldwide. The purpose of this study was to investigate the role of RBM15 in CC. The TCGA database was used to screen differentially expressed m6A genes in normal and tumor tissues. QRT-PCR was used to quantify HEIH, miR-802, EGFR, cell stemness, and epithelial-mesenchymal transition (EMT)-related genes. The interaction between HEIH and miR-802 was verified by dual-luciferase reporter assay and RIP assay. The occurrence of tumor cells after different treatments was detected by CCK-8, transwell and EdU staining. BALB/c nude mice were used to examine the effects of different treatments on tumor growth and cell stemness in vivo. RBM15 was upregulated in tumor tissues and cells. M6A was highly enriched in HEIH and enhances its RNA stability. HEIH acts as an oncogenic lncRNA to promote CC cell proliferation, migration and tumor growth. Mechanistically, HEIH regulates tumor cell stemness and promotes the proliferation and migration of CC cells by competitively adsorbing miR-802 and up-regulating the expression of EGFR. In short, our data shown that the m6A methyltransferase RBM15 could affect tumor cell proliferation, metastasis and cell stemness by stabilizing HEIH expression.


Assuntos
Adenina/análogos & derivados , MicroRNAs , RNA Longo não Codificante , Neoplasias do Colo do Útero , Animais , Camundongos , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias do Colo do Útero/patologia , Camundongos Nus , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
16.
Proc Natl Acad Sci U S A ; 119(28): e2200392119, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35787034

RESUMO

All-climate temperature operation capability and increased energy density have been recognized as two crucial targets, but they are rarely achieved together in rechargeable lithium (Li) batteries. Herein, we demonstrate an electrolyte system by using monodentate dibutyl ether with both low melting and high boiling points as the sole solvent. Its weak solvation endows an aggregate solvation structure and low solubility toward polysulfide species in a relatively low electrolyte concentration (2 mol L-1). These features were found to be vital in avoiding dendrite growth and enabling Li metal Coulombic efficiencies of 99.0%, 98.2%, and 98.7% at 23 °C, -40 °C, and 50 °C, respectively. Pouch cells employing thin Li metal (50 µm) and high-loading sulfurized polyacrylonitrile (3.3 mAh cm-2) cathodes (negative-to-positive capacity ratio = 2) output 87.5% and 115.9% of their room temperature capacity at -40 °C and 50 °C, respectively. This work provides solvent-based design criteria for a wide temperature range Li-sulfur pouch cells.

17.
Nano Lett ; 24(1): 245-253, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38157424

RESUMO

Mechanically strong and damage-tolerant corrosion protection layers are of great technological importance. However, corrosion protection layers with high modulus (>1.5 GPa) and tensile strength (>100 MPa) are rare. Here, we report that a 130 µm thick densified wood veneer with a Young's modulus of 34.49 GPa and tensile strength of 693 MPa exhibits both low diffusivity for metal ions and the ability of self-recovery from mechanical damage. Densified wood veneer is employed as an intermediate layer to render a mechanically strong corrosion protection structure, referred to as "wood corrosion protection structure", or WCPS. The corrosion rate of low-carbon steel protected by WCPS is reduced by 2 orders of magnitude than state-of-the-art corrosion protection layers during a salt spray test. The introduction of engineered wood veneer as a thin and mechanically strong material points to new directions of sustainable corrosion protection design.

18.
Am J Physiol Cell Physiol ; 326(6): C1611-C1624, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38646789

RESUMO

The influence of SGLT-1 on perivascular preadipocytes (PVPACs) and vascular remodeling is not well understood. This study aimed to elucidate the role and mechanism of SGLT-1-mediated PVPACs bioactivity. PVPACs were cultured in vitro and applied ex vivo to the carotid arteries of mice using a lentivirus-based thermosensitive in situ gel (TISG). The groups were treated with Lv-SGLT1 (lentiviral vector, overexpression), Lv-siSGLT1 (RNA interference, knockdown), or specific signaling pathway inhibitors. Assays were conducted to assess changes in cell proliferation, apoptosis, glucose uptake, adipogenic differentiation, and vascular remodeling in the PVPACs. Protein expression was analyzed by Western blotting, immunocytochemistry, and/or immunohistochemistry. The methyl thiazolyl tetrazolium (MTT) assay and Hoechst 33342 staining indicated that SGLT-1 overexpression significantly promoted PVPACs proliferation and inhibited apoptosis in vitro. Conversely, SGLT-1 knockdown exerted the opposite effect. Oil Red O staining revealed that SGLT-1 overexpression facilitated adipogenic differentiation, while its inhibition mitigated these effects. 3H-labeled glucose uptake experiments demonstrated that SGLT-1 overexpression enhanced glucose uptake by PVPACs, whereas RNA interference-mediated SGLT-1 inhibition had no significant effect on glucose uptake. Moreover, RT-qPCR, Western blotting, and immunofluorescence analyses revealed that SGLT-1 overexpression upregulated FABP4 and VEGF-A levels and activated the Akt/mTOR/p70S6K signaling pathway, whereas SGLT-1 knockdown produced the opposite effects. In vivo studies corroborated these findings and indicated that SGLT-1 overexpression facilitated carotid artery remodeling. Our study demonstrates that SGLT-1 activation of the Akt/mTOR/p70S6K signaling pathway promotes PVPACs proliferation, adipogenesis, glucose uptake, glucolipid metabolism, and vascular remodeling.NEW & NOTEWORTHY SGLT-1 is expressed in PVPACs and can affect preadipocyte glucolipid metabolism and vascular remodeling. SGLT-1 promotes the biofunctions of PVPACs mediated by Akt/mTOR/p70S6K signaling pathway. Compared with caudal vein or intraperitoneal injection, the external application of lentivirus-based thermal gel around the carotid artery is an innovative attempt at vascular remodeling model, it may effectively avoid the transfection of lentiviral vector into the whole body of mice and the adverse effect on experimental results.


Assuntos
Adipócitos , Proliferação de Células , Proteínas Proto-Oncogênicas c-akt , Proteínas Quinases S6 Ribossômicas 70-kDa , Transdução de Sinais , Transportador 1 de Glucose-Sódio , Serina-Treonina Quinases TOR , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Camundongos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Adipócitos/metabolismo , Transportador 1 de Glucose-Sódio/metabolismo , Transportador 1 de Glucose-Sódio/genética , Masculino , Adipogenia/fisiologia , Camundongos Endogâmicos C57BL , Remodelação Vascular , Células Cultivadas , Apoptose , Diferenciação Celular , Glucose/metabolismo , Glucose/deficiência
19.
BMC Genomics ; 25(1): 354, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594645

RESUMO

The homeodomain-leucine zipper (HD-Zip) gene family plays a pivotal role in plant development and stress responses. Nevertheless, a comprehensive characterization of the HD-Zip gene family in kiwifruit has been lacking. In this study, we have systematically identified 70 HD-Zip genes in the Actinidia chinensis (Ac) genome and 55 in the Actinidia eriantha (Ae) genome. These genes have been categorized into four subfamilies (HD-Zip I, II, III, and IV) through rigorous phylogenetic analysis. Analysis of synteny patterns and selection pressures has provided insights into how whole-genome duplication (WGD) or segmental may have contributed to the divergence in gene numbers between these two kiwifruit species, with duplicated gene pairs undergoing purifying selection. Furthermore, our study has unveiled tissue-specific expression patterns among kiwifruit HD-Zip genes, with some genes identified as key regulators of kiwifruit responses to bacterial canker disease and postharvest processes. These findings not only offer valuable insights into the evolutionary and functional characteristics of kiwifruit HD-Zips but also shed light on their potential roles in plant growth and development.


Assuntos
Actinidia , Proteínas de Homeodomínio , Proteínas de Homeodomínio/genética , Genoma de Planta , Filogenia , Actinidia/genética , Zíper de Leucina/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Perfilação da Expressão Gênica
20.
J Am Chem Soc ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38859684

RESUMO

Reducing iridium (Ir) catalyst loading for acidic oxygen evolution reaction (OER) is a critical strategy for large-scale hydrogen production via proton exchange membrane (PEM) water electrolysis. However, simultaneously achieving high activity, long-term stability, and reduced material cost remains challenging. To address this challenge, we develop a framework by combining density functional theory (DFT) prediction using model surfaces and proof-of-concept experimental verification using thin films and nanoparticles. DFT results predict that oxidized Ir monolayers over titanium nitride (IrOx/TiN) should display higher OER activity than IrOx while reducing Ir loading. This prediction is verified by depositing Ir monolayers over TiN thin films via physical vapor deposition. The promising thin film results are then extended to commercially viable powder IrOx/TiN catalysts, which demonstrate a lower overpotential and higher mass activity than commercial IrO2 and long-term stability of 250 h to maintain a current density of 10 mA cm-2. The superior OER performance of IrOx/TiN is further confirmed using a proton exchange membrane water electrolyzer (PEMWE), which shows a lower cell voltage than commercial IrO2 to achieve a current density of 1 A cm-2. Both DFT and in situ X-ray absorption spectroscopy reveal that the high OER performance of IrOx/TiN strongly depends on the IrOx-TiN interaction via direct Ir-Ti bonding. This study highlights the importance of close interaction between theoretical prediction based on mechanistic understanding and experimental verification based on thin film model catalysts to facilitate the development of more practical powder IrOx/TiN catalysts with high activity and stability for acidic OER.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA