Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sensors (Basel) ; 24(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38793862

RESUMO

Photovoltaic (PV) panels are one of the popular green energy resources and PV panel parameter estimations are one of the popular research topics in PV panel technology. The PV panel parameters could be used for PV panel health monitoring and fault diagnosis. Recently, a PV panel parameters estimation method based in neural network and numerical current predictor methods has been developed. However, in order to further improve the estimation accuracies, a new approach of PV panel parameter estimation is proposed in this paper. The output current and voltage dynamic responses of a PV panel are measured, and the time series of the I-V vectors will be used as input to an artificial neural network (ANN)-based PV model parameter range classifier (MPRC). The MPRC is trained using an I-V dataset with large variations in PV model parameters. The results of MPRC are used to preset the initial particles' population for a particle swarm optimization (PSO) algorithm. The PSO algorithm is used to estimate the PV panel parameters and the results could be used for PV panel health monitoring and the derivation of maximum power point tracking (MMPT). Simulations results based on an experimental I-V dataset and an I-V dataset generated by simulation show that the proposed algorithms can achieve up to 3.5% accuracy and the speed of convergence was significantly improved as compared to a purely PSO approach.

2.
Sensors (Basel) ; 23(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37050716

RESUMO

Photovoltaic (PV) panels have been widely used as one of the solutions for green energy sources. Performance monitoring, fault diagnosis, and Control of Operation at Maximum Power Point (MPP) of PV panels became one of the popular research topics in the past. Model parameters could reflect the health conditions of a PV panel, and model parameter estimation can be applied to PV panel fault diagnosis. In this paper, we will propose a new algorithm for PV panel model parameters estimation by using a Neural Network (ANN) with a Numerical Current Prediction (NCP) layer. Output voltage and current signals (VI) after load perturbation are observed. An ANN is trained to estimate the PV panel model parameters, which is then fined tuned by the NCP to improve the accuracy to about 6%. During the testing stage, VI signals are input into the proposed ANN-NCP system. PV panel model parameters can then be estimated by the proposed algorithms, and the estimated model parameters can be then used for fault detection, health monitoring, and tracking operating points for MPP conditions.

3.
Int Dent J ; 73(5): 724-730, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37117096

RESUMO

OBJECTIVES: Gingivitis is one of the most prevalent plaque-initiated dental diseases globally. It is challenging to maintain satisfactory plaque control without continuous professional advice. Artificial intelligence may be used to provide automated visual plaque control advice based on intraoral photographs. METHODS: Frontal view intraoral photographs fulfilling selection criteria were collected. Along the gingival margin, the gingival conditions of individual sites were labelled as healthy, diseased, or questionable. Photographs were randomly assigned as training or validation datasets. Training datasets were input into a novel artificial intelligence system and its accuracy in detection of gingivitis including sensitivity, specificity, and mean intersection-over-union were analysed using validation dataset. The accuracy was reported according to STARD-2015 statement. RESULTS: A total of 567 intraoral photographs were collected and labelled, of which 80% were used for training and 20% for validation. Regarding training datasets, there were total 113,745,208 pixels with 9,270,413; 5,711,027; and 4,596,612 pixels were labelled as healthy, diseased, and questionable respectively. Regarding validation datasets, there were 28,319,607 pixels with 1,732,031; 1,866,104; and 1,116,493 pixels were labelled as healthy, diseased, and questionable, respectively. AI correctly predicted 1,114,623 healthy and 1,183,718 diseased pixels with sensitivity of 0.92 and specificity of 0.94. The mean intersection-over-union of the system was 0.60 and above the commonly accepted threshold of 0.50. CONCLUSIONS: Artificial intelligence could identify specific sites with and without gingival inflammation, with high sensitivity and high specificity that are on par with visual examination by human dentist. This system may be used for monitoring of the effectiveness of patients' plaque control.


Assuntos
Placa Dentária , Gengivite , Humanos , Inteligência Artificial , Gengivite/diagnóstico
4.
IEEE Trans Neural Syst Rehabil Eng ; 27(5): 963-973, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30998471

RESUMO

Developmental coordination disorder (DCD) is a type of motor learning difficulty that affects five to six percent of school-aged children, which may have a negative impact on the life of the sufferers. Timely and objective diagnosis of DCD are important for the success of the intervention. The present evaluation methods of DCD rely heavily on the observational analysis of occupational therapists and physiotherapists, who score the performance when children conduct some designed tasks. However, these methods are expensive, subjective, and are not easy to expand to a larger population. A fine motor evaluation system (FMES) is proposed with two views of cameras to record children's performance, when they carry out three fine motor tasks. Automated algorithms are developed to perform automated scoring of fine motor skill. The automated algorithms include task localization and individual task evaluation. The purpose of task localization is to detect each task and extract segments belonging to each task from the original video that includes multiple segments of different tasks. A convolutional neural network with temporal filtering is used to do frame-wise classification, and a boundary localization algorithm is proposed to localize each task segment. For individual task evaluation, the extracted video segments of task 1 and task 2 are evaluated based on the proposed feature extraction and time positioning algorithm, and the paper drawings of task 3 are evaluated based on image processing. The proposed methods are validated on a diverse population of children with or without DCD by comparing automated scoring with manual scoring from a professional evaluator. The experimental results suggest that the proposed methods can effectively achieve fine motor evaluation for DCD assessment. Besides, our system is a low-cost solution, and the evaluation methods developed are automated, objective, and can be suited for large population evaluation and analysis.


Assuntos
Transtornos das Habilidades Motoras/diagnóstico , Destreza Motora , Desempenho Psicomotor/fisiologia , Algoritmos , Criança , Feminino , Humanos , Masculino , Transtornos das Habilidades Motoras/fisiopatologia , Redes Neurais de Computação , Reprodutibilidade dos Testes , Gravação em Vídeo
5.
J Healthc Eng ; 2018: 7692198, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29854365

RESUMO

Strabismus is one of the most common vision diseases that would cause amblyopia and even permanent vision loss. Timely diagnosis is crucial for well treating strabismus. In contrast to manual diagnosis, automatic recognition can significantly reduce labor cost and increase diagnosis efficiency. In this paper, we propose to recognize strabismus using eye-tracking data and convolutional neural networks. In particular, an eye tracker is first exploited to record a subject's eye movements. A gaze deviation (GaDe) image is then proposed to characterize the subject's eye-tracking data according to the accuracies of gaze points. The GaDe image is fed to a convolutional neural network (CNN) that has been trained on a large image database called ImageNet. The outputs of the full connection layers of the CNN are used as the GaDe image's features for strabismus recognition. A dataset containing eye-tracking data of both strabismic subjects and normal subjects is established for experiments. Experimental results demonstrate that the natural image features can be well transferred to represent eye-tracking data, and strabismus can be effectively recognized by our proposed method.


Assuntos
Ambliopia/diagnóstico por imagem , Diagnóstico por Computador/métodos , Movimentos Oculares , Redes Neurais de Computação , Estrabismo/diagnóstico por imagem , Adulto , Algoritmos , Simulação por Computador , Bases de Dados Factuais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reconhecimento Automatizado de Padrão , Interface Usuário-Computador
6.
Healthc Technol Lett ; 5(1): 1-6, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29515809

RESUMO

Strabismus is one of the most common vision disorders in preschool children. It can cause amblyopia and even permanent vision loss. In addition to a vision problem, strabismus brings to both children and adults serious negative impacts in their daily life, education, employment etc. Timely diagnosis of strabismus is thus crucial. However, traditional diagnosis methods conducted by ophthalmologists rely significantly on their experiences, making the diagnosis results subjective. It is also inconvenient for those methods being used for strabismus examination in large communities such as schools. In light of that, in this Letter, the authors develop an objective, digital and automatic system based on eye-tracking technique for diagnosing strabismus. The system exploits eye-tracking technique to acquire a person's eye gaze data while he or she is looking at some targets. A group of features are proposed to characterise the gaze data. The person's strabismus condition can be diagnosed according to the features. A strabismus gaze dataset is built using the system. Experimental results on the dataset demonstrate the effectiveness of the proposed system for strabismus diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA