Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 38(5): e23515, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38470367

RESUMO

Endometriosis is a benign gynecological disease that shares some common features of malignancy. Autophagy plays vital roles in endometriosis and influences endometrial cell metastasis, and hypoxia was identified as the initiator of this pathological process through hypoxia inducible factor 1 alpha (HIF-1α). A newly discovered circular RNA FOXO3 (circFOXO3) is critical in cell autophagy, migration, and invasion of various diseases and is reported to be related to hypoxia, although its role in endometriosis remains to be elucidated up to now. In this study, a lower circFOXO3 expression in ectopic endometrium was investigated. Furthermore, we verified that circFOXO3 could regulate autophagy by downregulating the level of p53 protein to mediate the migration and invasion of human endometrial stromal cells (T HESCs). Additionally, the effects of HIF-1α on circFOXO3 and autophagy were examined in T HESCs. Notably, overexpression of HIF-1α could induce autophagy and inhibit circFOXO3 expression, whereas overexpressing of circFOXO3 under hypoxia significantly inhibited hypoxia-induced autophagy. Mechanistically, the direct combination between HIF-1α and HIF-1α-binding site on adenosine deaminase 1 acting on RNA (ADAR1) promoter increased the level of ADAR1 protein, which bind directly with circFOXO3 pre-mRNA to block the cyclization of circFOXO3. All these results support that hypoxia-mediated ADAR1 elevation inhibited the expression of circFOXO3, and then autophagy was induced upon loss of circFOXO3 via inhibition of p53 degradation, participating in the development of endometriosis.


Assuntos
Endometriose , Feminino , Humanos , Endometriose/genética , Proteína Supressora de Tumor p53 , RNA , RNA Circular/genética , Autofagia , Hipóxia
2.
Biol Reprod ; 109(2): 156-171, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37233993

RESUMO

Endometriosis is a chronic inflammatory disease distinguished by ectopic endometrium and fibrosis. NLRP3 inflammasome and pyroptosis are present in endometriosis. Aberrant increase of Long noncoding (Lnc)-metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) plays a vital role in endometriosis. However, the relationship between lnc-MALAT1, pyroptosis, and fibrosis is not completely known. In the present study, we found that the pyroptosis levels in ectopic endometrium of patients with endometriosis were significantly increased, consistent with fibrosis levels. Lipopolysaccharide (LPS) + ATP could induce pyroptosis of primary endometrial stromal cells (ESCs), thereby releasing interleukin (IL)-1ß and stimulating transforming growth factor (TGF)-ß1-mediated fibrosis. NLRP3 inhibitor MCC950 had the same effect as TGF-ß1 inhibitor SB-431542 in suppressing the fibrosis-inducing effect of LPS + ATP in vivo and in vitro. The abnormal increase of lnc-MALAT1 in ectopic endometrium was connected with NLRP3-mediated pyroptosis and fibrosis. Leveraging bioinformatic prediction and luciferase assays combined with western blotting and quantitative reverse transcriptase-polymerase chain reaction, we validated that lnc-MALAT1 sponges miR-141-3p to promote NLRP3 expression. Silencing lnc-MALAT1 in HESCs ameliorated NLRP3-mediated pyroptosis and IL-1ß release, thereby relieving TGF-ß1-mediated fibrosis. Consequently, our findings suggest that lnc-MALAT1 is critical for NLRP3-induced pyroptosis and fibrosis in endometriosis through sponging miR-141-3p, which may indicate a new therapeutic target of endometriosis treatment.


Assuntos
Endometriose , MicroRNAs , RNA Longo não Codificante , Feminino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Piroptose , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , RNA Longo não Codificante/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Endometriose/genética , Lipopolissacarídeos/farmacologia , Fibrose , Trifosfato de Adenosina
3.
Reprod Biol Endocrinol ; 21(1): 99, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891533

RESUMO

BACKGROUND: Endometriosis-related infertility is a common worldwide reproductive health concern. Despite ongoing research, the causes of infertility remain unclear. Evidence suggests that epigenetic regulation is crucial in reproduction. However, the role of N6-methyladenosine (m6A) modification of RNA in endometriosis-related infertility requires further investigation. METHODS: We examined the expression of m6A and methyltransferase-like 3 (METTL3) in endometrial samples taken from normal fertile women in the proliferative phase (the NP group) or the mid-secretory phase (the NS group) or from women with endometriosis-related infertility at the mid-secretory phase (the ES group). We treated primary endometrial stromal cells (ESCs) with medroxyprogesterone acetate and 8-Bromo-cyclic adenosine monophosphate for in vitro decidualization and detected the expression of m6A, METTL3, and decidual markers. We analyzed the expression of m6A, METTL3, and forkhead box O1 (FOXO1) in ESCs from normal fertile women (the ND group) or women with endometriosis-related infertility (the ED group). We also assessed the expression of m6A, METTL3, and decidual markers, as well as the embryo adhesion rate, upon METTL3 overexpression or knockdown. Additionally, we investigated the role of METTL3 in embryo implantation in vivo by applying mice with endometriosis. Furthermore, we performed RNA stability assays, RNA immunoprecipitation (RIP), and methylated RIP assays to explore the mechanisms underlying the regulation of FOXO1 by METTL3-mediated m6A. RESULTS: The expression of m6A and METTL3 was reduced only in the NS group; the NP and ES groups demonstrated increased m6A and METTL3 levels. m6A and METTL3 levels decreased in ESCs with prolonged decidual treatment. Compared to the ND group, m6A and METTL3 levels in the ED group increased after decidual treatment, whereas the expression of FOXO1 decreased. METTL3 overexpression suppressed the expression of decidual markers and embryo implantation in vitro; METTL3 knockdown exhibited the opposite effect. Inhibition of METTL3 promoted embryo implantation in vivo. Furthermore, we observed that METTL3-mediated m6A regulated the degradation of FOXO1 mRNA through YTHDF2, a m6A binding protein. CONCLUSIONS: METTL3-regulated m6A promotes YTHDF2-mediated decay of FOXO1 mRNA, thereby affecting cellular decidualization and embryo implantation. These findings provide novel insights into the development of therapies for women with endometriosis-related infertility.


Assuntos
Endometriose , Infertilidade Feminina , Animais , Feminino , Humanos , Camundongos , Endometriose/complicações , Endometriose/genética , Epigênese Genética , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Células Estromais/metabolismo , Fatores de Transcrição/genética , Infertilidade Feminina/metabolismo
4.
Reprod Biomed Online ; 46(2): 352-361, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36566146

RESUMO

RESEARCH QUESTION: Is sequential letrozole/human menopausal gonadotrophin (HMG) superior to letrozole alone in ovulation induction and pregnancy promotion among infertile women with polycystic ovary syndrome (PCOS)? DESIGN: This open-label randomized controlled trial comparing sequential letrozole/HMG and letrozole alone included 174 participants enrolled from August 2019 to January 2020 at the Union Hospital of Tongji Medical College, Huazhong University of Science and Technology. Infertile women aged between 18 and 40 years who met Rotterdam criteria for PCOS and without other known causes of infertility were selected for this study. Patients were randomly assigned at a 1:1 ratio to receive 2.5 mg letrozole on cycle days 3-7 (n = 87) or 2.5 mg letrozole on cycle days 3-7 with a sequential injection of 75 IU HMG on cycle days 8-10 for one treatment cycle (n = 87). The pregnancy outcome was recorded after one treatment cycle. RESULTS: Women receiving sequential treatment achieved a significantly higher ovulation rate than those in the letrozole group (90.8% versus 70.1%, P = 0.001) and the live birth rate of the sequential group was significantly higher than that of the letrozole protocol (23.0% versus 10.3%, P = 0.025); there was no statistical variation with respect to adverse events. CONCLUSIONS: The data suggest that the sequential letrozole/HMG protocol may be superior to the letrozole alone protocol in terms of ovulation induction and pregnancy promotion among infertile women with PCOS.


Assuntos
Infertilidade Feminina , Síndrome do Ovário Policístico , Gravidez , Humanos , Feminino , Adolescente , Adulto Jovem , Adulto , Letrozol , Infertilidade Feminina/terapia , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/tratamento farmacológico , Clomifeno , Fármacos para a Fertilidade Feminina , Gonadotropinas , Indução da Ovulação/métodos , Menotropinas/uso terapêutico , Taxa de Gravidez , Ovulação
5.
Gynecol Endocrinol ; 39(1): 2223648, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37406658

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is the most common endocrine disorder with complex pathophysiological mechanism. It is reported that even a modest weight loss of 5-10% substantially may improve the reproductive and metabolic profile. This study aims to assess the efficacy of the low dose of liraglutide (0.6 mg QD) combined with metformin (0.85 mg BID) in weight loss in Chinese Han women with PCOS. METHODS: We included clinical data of 102 obese/overweight (≥18 years, body mass index ≥28 kg/m2 or ≥24 kg/m2) women who were diagnosed with PCOS from October 2016 to March 2018 in Wuhan Union Hospital initially. They were treated with dinae-35, low dose of liraglutide (0.6 mg QD) and metformin (0.85 mg BID) for 12 weeks. The demographic and clinical data were retrieved retrospectively, and weight loss was the main outcome measure. Student's paired t-test and Wilcoxon rank sum test were used to compare the differences before and after therapy, p < 0.05 was considered statistically significant. RESULTS: Participants(n = 102)had lost a mean of 7.20 ± 3.42 kg of body weight (95%CI: 6.55-7.86, p < 0.001), and the mean reduction of BMI was 2.87 ± 1.36 kg/m2 (95%CI: 0.02-0.27, p < 0.001). A total of 88.24% of participants lost more than 5% of their body weight. CONCLUSION: The combination of low dose of liraglutide and metformin was associated with significant reduction of body weight in Chinese Han women with PCOS. Additionally, a larger randomized double-blind multicenter controlled clinical trial is needed to confirm that. TRIAL REGISTRATION: The study was registered on http://www.chictr.org.cn as ChiCTR1900024384.


Assuntos
Metformina , Síndrome do Ovário Policístico , Feminino , Humanos , Peso Corporal , População do Leste Asiático , Hipoglicemiantes/uso terapêutico , Liraglutida/uso terapêutico , Metformina/uso terapêutico , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/tratamento farmacológico , Estudos Retrospectivos , Redução de Peso , Adulto
6.
Biol Reprod ; 105(5): 1221-1233, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34382070

RESUMO

N 6-methyladenosine (m6A), one of the most abundant RNA modifications, is involved in the progression of many diseases, but its role and related molecular mechanisms in endometriosis remain unknown. To address these issues, we detected m6A levels in normal, eutopic, and ectopic endometrium and found the m6A levels decreased in eutopic and ectopic endometrium compared with normal endometrium. In addition, we proved that methyltransferase-like 3 (METTL3) downregulation accounted for m6A reduction in endometriosis. Furthermore, we observed that METTL3 knockdown facilitated the migration and invasion of human endometrial stromal cells (HESCs), whereas METTL3 overexpression exerted opposite effects, suggesting that METTL3 downregulation might contribute to endometriosis development by enhancing cellular migration and invasion. Mechanistically, METTL3-dependent m6A was involved in the DGCR8-mediated maturation of primary microRNA126 (miR126 and pri-miR126). Moreover, miR126 inhibitor significantly enhanced the migration and invasion of METTL3-overexpressing HESCs, whereas miR126 mimics attenuated the migration and invasion of METTL3-silenced HESCs. Our study revealed the METTL3/m6A/miR126 pathway, whose inhibition might contribute to endometriosis development by enhancing cellular migration and invasion. It also showed that METTL3 might be a novel diagnostic biomarker and therapeutic target for endometriosis.


Assuntos
Movimento Celular/genética , Endometriose/genética , Células Epiteliais/metabolismo , Metiltransferases/genética , MicroRNAs/genética , Células Estromais/metabolismo , Regulação para Baixo , Endométrio/metabolismo , Feminino , Humanos , Metiltransferases/metabolismo , MicroRNAs/metabolismo
7.
Reprod Biomed Online ; 41(1): 11-18, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32444257

RESUMO

RESEARCH QUESTION: What are the protein levels and localization of oestrogen receptors (including ERa, ERb and G protein-coupled oestrogen receptor [GPER]) and hypoxia-inducible factor-1alpha (HIF-1a) in normal control endometrium (COEM) and ectopic endometrium from abdominal wall endometriosis (AWE). DESIGN: AWE (n = 20) were obtained during surgery; COEM (n = 40) were collected by curettage. All tissues were obtained during the proliferative or secretory phase. Formalin-fixed paraffin-embedded tissues were used for immunohistochemical study for oestrogen receptors and HIF-1a proteins. RESULT(S): The expression of oestrogen receptors and HIF-1a in AWE differed from that in the corresponding menstrual cycle phase of COEM. Compared with COEM, ERa and HIF-1a were decreased whereas ERb and GPER were increased in AWE. The greatest difference was in GPER, with increased protein expression in both the cytoplasm and nucleus of endometrial epithelial and stromal cells, as well as a distinct change in localization from cytoplasmic expression to nuclear and cytoplasmic expression, compared with COEM. CONCLUSIONS: Our data suggest that the expression changes of oestrogen receptors and HIF-1a, especially GPER, are associated with AWE, which may provide new clues to understanding the cause of endometriosis.


Assuntos
Parede Abdominal , Endometriose/metabolismo , Endométrio/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Doenças Peritoneais/metabolismo , Receptores de Estrogênio/metabolismo , Adulto , Feminino , Humanos , Células Estromais/metabolismo , Adulto Jovem
8.
J Colloid Interface Sci ; 624: 60-69, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35660911

RESUMO

Aiming at the drawbacks of hematite like poor conductivity and tardy oxidation kinetics, herein, we utilized dual dopants in the bulk and surface to ameliorate the situation. Specifically, doping optimal amount of Zr4+ in the hematite (Zr:Fe2O3) enhances the conductivity of hematite due to the higher charge carrier density. Further, F:FeOOH could form p-n heterojunction in bulk where a potential barrier is built up that repels electrons but prompts holes transferring to F:FeOOH for water oxidation. What's more, the high electronegative of F- would withdraw electron from the Fe site in FeOOH, and the enhanced positive electricity of Fe3+ is beneficial for adsorption of OH- as well as enhance the conductivity of FeOOH to expedite holes transfer. As a result, the composite photoanode (F:FeOOH/Zr:Fe2O3) shows a 3.25-times enhanced photocurrent density comparing with α-Fe2O3. The special designation employs ultrathin F:FeOOH to act as both p-type semiconductor and efficient co-catalyst, avoiding redundant layer that would extend the migration distance of holes. On the top of that, the dual modification approach provides an extensive prospect for the further application of hematite.

9.
Nanoscale ; 13(25): 11215-11222, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34151924

RESUMO

The difficult separation and transfer of photoexcited charge carriers in composite photoelectrodes is a decisive factor limiting the efficiencies of semiconductor-based photoelectrochemical water splitting systems. Herein, to further enhance the photoelectrochemical properties of ZnO-based photoanodes, we constructed composite ZnO nanoarray photoanodes with Fe-self-doped lanthanum ferrite (denoted as La1-xFe1+xO3/ZnO NRs), which had the effect of killing two birds with one stone. This improvement strategy differs from the previously popular multi-step modification process, and integrates the dual benefits of a heterojunction and cocatalyst using the same material, the doped LaFeO3, which bypasses the shortcomings of multi-step charge transfer. Gratifyingly, benefitting from the suitable energy bands and excellent electrocatalytic oxygen evolution activity of La0.9Fe1.1O3, the photoanode exhibits outstanding bulk charge separation and surface charge utilization efficiencies, as well as achieving a photocurrent density that is over three times higher than that of pristine ZnO NRs, with a small onset potential (0.33 V vs. RHE). This electrode modification concept provides guidance for the development of other highly active photoelectrodes.

10.
Nanoscale ; 13(33): 14197-14206, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34477701

RESUMO

Surface modification by loading a water oxidation co-catalyst (WOC) is generally considered an efficient means to optimize the sluggish surface oxygen evolution reaction (OER) of a hematite photoanode for photoelectrochemical (PEC) water oxidation. However, the surface WOC usually exerts little impact on the bulk charge separation of hematite. Herein, an ultrathin citrate-Ni0.9Co0.1(OH)x [Cit-Ni0.9Co0.1(OH)x] is conformally coated on the fluorine-doped hematite (F-Fe2O3) photoanode for PEC water oxidation to simultaneously promote the internal hole extraction and surface hole injection of the target photoanode. Besides, the conformally coated Cit-Ni0.9Co0.1(OH)x overlayer passivates the redundant surface trap states of F-Fe2O3. These factors result in a superior photocurrent density of 2.52 mA cm-2 at 1.23 V versus a reversible hydrogen electrode (V vs. RHE) for the target photoanode. Detailed investigation manifests that the hole extraction property in Cit-Ni0.9Co0.1(OH)x is mainly derived from the Ni sites, while Co incorporation endows the overlayer with more catalytic active sites. This synergistic effect between Ni and Co contributes to a rapid and continuous hole migration pathway from the bulk to the interface of the target photoanode, and then to the electrolyte for water oxidation.

11.
ACS Appl Mater Interfaces ; 12(2): 2452-2459, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31845790

RESUMO

Despite the fact that perovskite oxides with high photoelectrochemical (PEC) stability have gained widespread concern in the field of photo(electro)catalytic water splitting, the potential as a photoelectrode has not yet fully exploited. Herein, perovskite oxide-decorated ZnO nanorod photoanode improves the vital issue that photoproduced electron-hole pairs are apt to be quenched, in which type II band alignment between perovskite oxide and ZnO plays a crucial role in extracting carriers. Further, coupling with layered double hydroxide (LDH) onto the heterostructure not only tunes surface injection behavior of charge carriers by facilitating the interface reaction dynamics but also suppresses ZnO self-corrosion for extended durability. As a result, the optimized CoAl-LDH/LaFeO3/ZnO nanorod photoanode yields a much enhancive effect for the PEC property in terms of photocurrent density (2.46 mA cm-2 at 1.23 V vs reversible hydrogen electrode under AM 1.5G), onset potential, and stability. This work signifies a feasible design to combine promising perovskite oxides with the traditional photoelectrode system for achieving efficient water splitting.

12.
ACS Appl Mater Interfaces ; 12(44): 49705-49712, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33104336

RESUMO

The charge transfer is a key issue in the development of efficient photoelectrodes. Here, we report a method using F-doping and dual-layer ultrathin amorphous FeOOH/CoOOH cocatalysts coupling to enable the inactive α-Fe2O3 photoanode to become highly vibrant for the oxygen evolution reaction (OER). Fluorine doping is revealed to increase the charge density and improve the conductivity of α-Fe2O3 for rapid charge transfer. Furthermore, ultrathin FeOOH was deposited on F-Fe2O3 to extract photogenerated holes and passivate the surface states for accelerated charge carrier transfer. Moreover, CoOOH as an excellent cocatalyst was coated onto FeOOH/F-Fe2O3 with the photoassisted electrodeposition method remarkably expediting OER kinetics through an optional pathway of holes utilized by Co species. Ultimately, the CoOOH/FeOOH/F-Fe2O3 photoanode exhibits a satisfactory photocurrent density (3.3-fold higher than pristine α-Fe2O3) and a negatively shifted onset potential of 80 mV. This work showcases an appealing maneuver to activate the water oxidation performance of the α-Fe2O3 photoanode by an integration strategy of heteroatom doping and cocatalyst coupling.

13.
Nanoscale ; 12(28): 15193-15200, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32638787

RESUMO

The photoelectrochemical (PEC) water reduction performance of CuBi2O4 (CBO)-based photocathodes is still far from their theoretical values due to low bulk and surface charge separation efficiencies. Herein, we propose a regrowth strategy to prepare a photocathode with CBO coating on Zn-doped CBO (CBO/Zn-CBO). Furthermore, NaBH4 treatment of CBO/Zn-CBO introduced oxygen vacancies (Ov) on CBO/Zn-CBO. It was found that Zn-doping not only increases the charge carrier concentration of CBO, but also leads to appropriate band alignment to form homojunctions. This homojunction can effectively promote the separation of electron-hole pairs, thus obtaining excellent photocurrent density (0.5 mA cm-2 at 0.3 V vs. RHE) and charge separation efficiency (1.5 times than CBO). The following surface treatment induced Ov on CBO/Zn-CBO, which significantly increased the active area of the surface catalytic reaction and further enhanced the photocurrent density (0.6 mA cm-2). In the absence of cocatalysts, the electron injection efficiency of Ov/CBO/Zn-CBO was 1.47 times improved than that of CBO. This work demonstrates a homojunction photocathode with Ov modulation, which provides a new view for future photoelectrochemical water splitting.

14.
Nanoscale ; 12(5): 3259-3266, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31970358

RESUMO

Poor charge separation and sluggish oxygen evolution reaction (OER) kinetics are two typical factors that hinder the photoelectrochemical (PEC) applications of hematite. Dual modification via heteroatom doping and surface treatment is an attractive strategy to overcome the above problems. Herein, for the first time, a hematite nanorod photoanode was ameliorated via the fluorine treatment (F-treatment) of both bulk and surface, enabling simultaneous charge separation from the interior to the interface. Accordingly, the novel photoanode (FeFx/F-Fe2O3) exhibited an outstanding PEC water oxidation activity, with a 3-fold improved photocurrent density than that obtained using unmodified α-Fe2O3. More specifically, fluorine doping (F-doping) in the hematite bulk remarkably increased the concentration of charge carriers and endowed it with favorable electrical conductivity for rapid charge transfer. Further surface F-treatment on F-doped α-Fe2O3 (F-Fe2O3) enriched the F-Fe bonds on the surface, which significantly boosted the OER kinetics and thereby inhibited the detrimental charge recombination. As a consequence, the efficiencies of bulk electron-hole pair separation and surface hole injection increased by 2.8 and 1.7 times, respectively. This study points to fluorine modulation as an attractive avenue to advance the PEC performance of metal oxide-based photoelectrode materials.

15.
ACS Appl Mater Interfaces ; 11(33): 29799-29806, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31368692

RESUMO

Earth-abundant hematite is an attractive photoanode for photoelectrochemical water splitting, whereas the intrinsic properties of inferior charge transfer and slow water oxidation kinetics still hinder its application. In response, an integrated photoanode has been constructed with hematite nanorod arrays modified by fluorine anion doping and further decorated with amorphous CoAl-layered double hydroxides (CoAl-LDH). This novel CoAl-LDH/F-Fe2O3 photoanode exhibited an excellent photocurrent density of 2.46 mA cm-2 at 1.23 V versus reversible hydrogen electrode (VRHE), five times enhanced than that of pristine α-Fe2O3. Systematic investigations reveal that fluorine anion serving as a donor dopant dramatically enhances the density of charge carrier and reduces the resistance of hematite for rapid charge transfer. Furthermore, the cocatalyst of CoAl-LDH could effectively passivate the surface defects of F-Fe2O3 and facilitate the water oxidation kinetics through an alternative pathway of holes trapped by Co species. As a consequence, the charge separation efficiencies of the bulk and surface were improved to 32.6 and 81.8%, respectively, compared with those of α-Fe2O3 (9.7 and 31.7%). Our results demonstrate that the dual modification of the bulk and surface is an attractive maneuver to ameliorate the water oxidation activity of hematite.

16.
Nanoscale ; 10(13): 5834-5839, 2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29542740

RESUMO

This work developed a simple and efficient method to covalently functionalize black phosphorus nanoflakes (BPNFs) with carbon free radicals from azodiisobutyronitrile (AIBN) molecules. BPNFs after successful modification (BPNFs-AIBN) not only had good stability in air and aqueous solution, but also still maintained good optical properties.

17.
ChemSusChem ; 11(13): 2156-2164, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29768719

RESUMO

The photoelectrochemical (PEC) water-splitting efficiency of a hematite-based photoanode is still far from the theoretical value due to its poor surface reaction kinetics and high density of surface trapping states. To solve these drawbacks, a photoanode consisting of NiO nanoparticles anchored on a gradient phosphorus-doped α-Fe2 O3 nanorod (NR) array (NiO/P-α-Fe2 O3 ) was fabricated to achieve optimal light absorption and charge separation, as well as rapid surface reaction kinetics. Specifically, a photoanode with the NR array structure allowed a high mass-transport rate to be achieved, while phosphorus doping effectively decreased the number of surface trapping sites and improved the electrical conductivity of α-Fe2 O3 . Furthermore, the p-n junction that forms between NiO and P-α-Fe2 O3 can further improve the PEC performance due to efficient hole extraction and the water oxidization catalytic activity of NiO. Consequently, the NiO/P-α-Fe2 O3 NR photoanode produced a high photocurrent density of 2.08 mA cm-2 at 1.23 V versus a reversible hydrogen electrode and a 110 mV cathodic shift of the onset potential. This rational design of structure offers a new perspective in exploring high-performance PEC photoanodes.

18.
ChemSusChem ; 11(23): 4094-4101, 2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30265451

RESUMO

Application of ZnO in the field of photoelectrochemical water splitting is limited because of its wide-band-gap and high recombination rate. Herein is reported the design of an efficient ZnO photoanode deposited with CoOx nanoparticles to achieve a heterojunction and oxygen vacancies. The CoOx nanoparticles with abundant oxygen vacancies were anchored onto the nanorod arrays by spin coating and calcination followed by a solvothermal treatment. CoOx nanoparticles serve the dual function of forming a p-n heterojunction to facilitate the separation of photogenerated carriers, and act as a cocatalyst to decrease water oxidation barrier. Finally, oxygen vacancies increase the number of active redox sites and act as hole traps, enabling their migration to the electrode/electrolyte interface. The composite photoanode exhibits a high incident photon-to-current conversion efficiency (76.7 % at 350 nm), which is twice that of pristine ZnO, and a photoconversion efficiency of 0.68 % (0.73 V versus RHE). The current approach can be expanded to fabricate other efficient photocatalysts.

19.
ChemSusChem ; 11(15): 2502-2509, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-29863749

RESUMO

Bismuth vanadate (BiVO4 ) has triggered extensive interest in photoelectrochemical (PEC) water splitting, owing to its narrow band gap and sufficiently positive valence band. However, some defects still exist to block the solar utilization efficiency and hydrogen evolution kinetics. Herein, the NiMoO4 semiconductor is combined with a BiVO4 photoanode, for the first time, and excellent PEC performance is achieved on the basis of heterojunction formation and favorable conductivity of NiMoO4 . In addition, it has been demonstrated that NiMoO4 promotes the light absorption ability, charge separation efficiency, and surface charge-transfer efficiency comprehensively. To further improve the photoconversion efficiency, cobalt phosphate, as an oxygen evolution reaction cocatalyst, is deposited on the above electrode and achieves a much enhanced utilization efficiency of 1.18 %, with a photocurrent density of 5.3 mA cm-2 at 1.23 V versus a reversible hydrogen electrode; this exceeds most results reported to date. This rational and unique photoanode construction provides a new thread for the photoelectrode designation.

20.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 31(5): 407-10, 2015 Sep.
Artigo em Zh | MEDLINE | ID: mdl-26827530

RESUMO

OBJECTIVE: To investigate the effect of component I from agkistrodon acutus venomon (AAVC-I) the migration of human umbilical vein endothelial cells (HUVECs), and to elucidate the possible anti-angiogenic mechanism of AAVC-I. METHODS: The effect of AAVC-I on the migration of HUVECs which was cultivated in vitro and treated with AAVC-1 at four concentrations: 0, 20, 40, 80 microg/ml, was observed by methods of scratch wound-healing and Transwell assay. The expression level of mRNA and protein of P-selectin and intercellular cell adhension molecule-I (ICAM-1) were examined by RT-PCR and Western blot assay. RESULTS: Compared with the blank group, the migration ability of HUVECs in each AAVE-I treated group was reduced in a dose-dependent manner, and the expression level of the mRNA and protein of P-selectin and ICAM-1 were decreased. CONCLUSION: AAVC-I inhibits the migration of endothelial cell, which is acted by down-regulation of the expression content of mRNA and protein of P-selectin and ICAM-1.


Assuntos
Movimento Celular/efeitos dos fármacos , Venenos de Crotalídeos/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Selectina-P/metabolismo , RNA Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA