Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Org Chem ; 87(21): 14299-14307, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36227689

RESUMO

Hydrothermal dehydration is an attractive method for deoxygenation and upgrading of biofuels because it requires no reagents or catalysts other than superheated water. Although mono-alcohols cleanly deoxygenate via dehydration under many conditions, polyols such as those derived from saccharides and related structures are known to be recalcitrant with respect to dehydration. Here, we describe detailed mechanistic and kinetic studies of hydrothermal dehydration of 1,2- and 1,4-cyclohexanediols as model compounds to investigate how interactions between the hydroxyls can control the reaction. The diols generally dehydrate more slowly and have more complex reaction pathways than simple cyclohexanol. Although hydrogen bonding between hydroxyls is an important feature of the diol reactions, hydrogen bonding on its own does not explain the reduced reactivity. Rather, it is the way that hydrogen bonding influences the balance between the E1 and E2 elimination mechanisms. We also describe the reaction pathways and follow-up secondary reactions for the slower-dehydrating diols.


Assuntos
Álcoois , Desidratação , Humanos , Cinética , Álcoois/química , Ligação de Hidrogênio , Catálise
2.
J Phys Chem A ; 123(49): 10490-10499, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31724860

RESUMO

Absolute rate theories attempt to predict the rate constants of reactions from basic principles and independent data. For the contribution of solvent to a reaction rate constant, this requires connecting absolute rate data to fundamental solvent properties such as dielectric constant and refractive index. We have explored this connection for the unimolecular fragmentation reaction of a pinacol radical cation. The rate constants for fragmentation were measured as a function of temperature in 12 different solvents with dielectric constants from 4.7 to 36.2, and the free energies of activation for bond fragmentation in each solvent determined using transition state theory. Using the solvent effects on electron-transfer reactions as a starting point, Marcus theory was used to model the solvent effect on the reaction activation energies. The solvent contribution to both the activation free energy and the overall reaction energy is best described using the Born model rather than the Pekar solvation model. The solvent reorganization energies for bond fragmentation are substantially larger than solvent reorganization energies for electron transfer, presumably because of the requirement to translate the solvent molecules in the course of bond breaking.

3.
J Org Chem ; 79(17): 7861-71, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25025270

RESUMO

Hydrothermal organic transformations under geochemically relevant conditions can result in complex product mixtures that form via multiple reaction pathways. The hydrothermal decomposition reactions of the model ketone dibenzyl ketone form a mixture of reduction, dehydration, fragmentation, and coupling products that suggest simultaneous and competitive radical and ionic reaction pathways. Here we show how Norrish Type I photocleavage of dibenzyl ketone can be used to independently generate the benzyl radicals previously proposed as the primary intermediates for the pure hydrothermal reaction. Under hydrothermal conditions, the benzyl radicals undergo hydrogen atom abstraction from dibenzyl ketone and para-coupling reactions that are not observed under ambient conditions. The photochemical method allows the primary radical coupling products to be identified, and because these products are generated rapidly, the method also allows the kinetics of the subsequent dehydration and Paal-Knorr cyclization reactions to be measured. In this way, the radical and ionic thermal and hydrothermal reaction pathways can be studied separately.

4.
J Phys Chem Lett ; 6(24): 4943-6, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26618410

RESUMO

Sequestering carbon dioxide emissions by the trap and release of CO2 via thermally activated chemical reactions has proven problematic because of the energetic requirements of the release reactions. Here we demonstrate trap and release of carbon dioxide using electrochemical activation, where the reactions in both directions are exergonic and proceed rapidly with low activation barriers. One-electron reduction of 4,4'-bipyridine forms the radical anion, which undergoes rapid covalent bond formation with carbon dioxide to form an adduct. One-electron oxidation of this adduct releases the bipyridine and carbon dioxide. Reversible trap and release of carbon dioxide over multiple cycles is demonstrated in solution at room temperature, and without the requirement for thermal activation.

5.
Photochem Photobiol ; 90(2): 313-28, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24354634

RESUMO

Irreversible photooxidation based on N-O bond fragmentation is demonstrated for N-methoxyheterocycles in both the singlet and triplet excited state manifolds. The energetic requirements for bond fragmentation are studied in detail. Bond fragmentation in the excited singlet manifold is possible for ππ* singlet states with energies significantly larger than the N-O bond dissociation energy of ca 55 kcal mol(-1). For the nπ* triplet states, N-O bond fragmentation does not occur in the excited state for orbital overlap and energetic reasons. Irreversible photooxidation occurs in the singlet states by bond fragmentation followed by electron transfer. Irreversible photooxidation occurs in the triplet states via bimolecular electron transfer to the donor followed by bond fragmentation. Using these two sensitization schemes, donors can be irreversibly oxidized with oxidation potentials ranging from ca 1.6-2.2 V vs SCE. The corresponding N-ethylheterocycles are characterized as conventional reversible photooxidants in their triplet states. The utility of these sensitizers is demonstrated by irreversibly generating the guanosine radical cation in buffered aqueous solution.


Assuntos
Compostos Heterocíclicos/química , Oxidantes/química , Processos Fotoquímicos , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética
6.
J Phys Chem A ; 109(12): 2912-9, 2005 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-16833609

RESUMO

The kinetics of bond fragmentation for a series of N-methoxypyridyl radicals are analyzed in terms of a simple curve-crossing model that includes bond stretching and bond bending coordinates. The model accurately reproduces the reaction surfaces calculated using density functional theory (DFT) and also the experimental reaction energy barriers. The reactions proceed on the ground state surface by avoidance of a conical intersection, which is clearly illustrated by the model. A value for the electronic coupling matrix element responsible for splitting the upper and lower surfaces of 0.9 eV is obtained. The model illustrates the molecular features that allow barrierless fragmentation from a formally pi radical.

7.
J Org Chem ; 70(6): 2014-20, 2005 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-15760181

RESUMO

[reaction: see text] N-Methoxypyridyl radicals formed by one-electron reduction of the corresponding cationic heterocycles undergo N-O bond cleavage. Experimental activation free energies for a series of these bond fragmentations are compared to corresponding barriers determined from electronic structure calculations. The DFT barriers agree well with those from experiment, being smaller than the latter values by an average value of ca. 1 kcal/mol, for rate constants varying over almost 3 orders of magnitude, or within ca. 3 kcal/mol over 8 orders of magnitude of rate constant. For a model compound, the B3PW91/6-31+G hybrid density functional method is also found to be in good agreement with the MCSCF-MRMP2 method. One of the reactions is found by DFT to have no minimum for the reactant radical, consistent with a truly barrierless reaction.

8.
J Am Chem Soc ; 126(43): 14071-8, 2004 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-15506771

RESUMO

The ultrafast N-O bond fragmentation in a series of N-methoxypyridyl radicals, formed by one-electron reduction of the corresponding N-methoxypyridiniums, has been investigated as potentially barrierless electron-transfer-initiated chemical reactions. A model for the reaction involving the electronic and geometric factors that control the shape of the potential energy surface for the reaction is described. On the basis of this model, molecular structural features appropriate for ultrafast reactivity are proposed. Femtosecond kinetic measurements on these reactions are consistent with a kinetic definition of an essentially barrierless reaction, i.e., that the lifetime of the radical is a few vibrational periods of the fragmenting bond, for the p-methoxy-N-methoxypyridyl radical.

9.
J Am Chem Soc ; 124(51): 15225-38, 2002 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-12487598

RESUMO

N-alkoxyheterocycles can act as powerful one-electron acceptors in photochemical electron-transfer reactions. One-electron reduction of these species results in formation of a radical that undergoes N-O bond fragmentation to form an alkoxy radical and a neutral heterocycle. The kinetics of this N-O bond fragmentation reaction have been determined for a series of radicals with varying substituents and extents of delocalization. Rate constants varying over 7 orders of magnitude are obtained. A reaction potential energy surface is described that involves avoidance of a conical intersection. A molecular basis for the variation of the reaction rate constant with radical structure is given in terms of the relationship between the energies of the important molecular orbitals and the reaction potential energy surface. Ab initio and density functional electronic structure calculations provide support for the proposed reaction energy surface.

10.
J Org Chem ; 68(21): 8110-4, 2003 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-14535791

RESUMO

3,6-bis(trifluoromethyl)- and 3,6-bis(pentafluoroethyl)-1,2-dithiin (1a,b), the first known perfluoroalkyl-substituted 1,2-dithiins, were synthesized from (Z,Z)-1,4-bis(tert-butylthio)-1,3-butadiene (2) to evaluate the effects of electron-withdrawing groups on the ionization and oxidation potentials of 1,2-dithiins. Analysis of the photoelectron spectra of 1a and 1b provided a basis for assigning orbital compositions. Ab initio calculations on these compounds showed that they adopt a twist geometry as does 1,2-dithiin (1c) itself. Cyclic voltammetric studies on 1a and 1b revealed a reversible oxidation followed by an irreversible oxidation at much more positive potentials than for 1,2-dithiin and 3,6-dimethyl-1,2-dithiin (1d). The oxidation potentials determined electrochemically do not correlate with the ionization potentials determined by photoelectron spectroscopy. This result supports the previously advanced hypothesis that there is a geometry change on electrochemical oxidation leading to a planar radical cation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA