RESUMO
Leveraging aerosol data from multiple airborne and surface-based field campaigns encompassing diverse environmental conditions, we calculate statistics of the oxalate-sulfate mass ratio (median: 0.0217; 95% confidence interval: 0.0154-0.0296; R = 0.76; N = 2,948). Ground-based measurements of the oxalate-sulfate ratio fall within our 95% confidence interval, suggesting the range is robust within the mixed layer for the submicrometer particle size range. We demonstrate that dust and biomass burning emissions can separately bias this ratio toward higher values by at least one order of magnitude. In the absence of these confounding factors, the 95% confidence interval of the ratio may be used to estimate the relative extent of aqueous processing by comparing inferred oxalate concentrations between air masses, with the assumption that sulfate primarily originates from aqueous processing.
RESUMO
This study examined spatial variations of precipitation accumulation and chemistry for six sites located on the West and East Coasts of the U.S., and one site each on the islands of Hawaii, Bermuda, and Luzon of the Philippines (specifically Manila). The nine coastal sites ranged widely in both mean annual precipitation accumulation, ranging from 40 cm (Mauna Loa, Hawaii) to 275 cm (Washington), and in terms of monthly profiles. The three island sites represented the extremes of differences in terms of chemical profiles, with Bermuda having the highest overall ion concentrations driven mainly by sea salt, Hawaii having the highest SO 4 2 - mass fractions due to the nearby influence of volcanic SO2 emissions and mid-tropospheric transport of anthropogenic pollution, and Manila exhibiting the highest concentration of non-marine ions ( NH 4 + non-sea salt [nss] SO 4 2 - , nss Ca2+, NO 3 - , nss K+, nss Na+, nss Mg2+) linked to anthropogenic, biomass burning, and crustal emissions. The Manila site exhibited the most variability in composition throughout the year due to shifting wind directions and having diverse regional and local pollutant sources. In contrast to the three island sites, the North American continental sites exhibited less variability in precipitation composition with sea salt being the most abundant constituent followed by some combination of SO 4 2 - , NO 3 - , and NH 4 + . The mean-annual pH values ranged from 4.88 (South Carolina) to 5.40 (central California) with NH 4 + exhibiting the highest neutralization factors for all sites except Bermuda where dust tracer species (nss Ca2+) exhibited enhanced values. The results of this study highlight the sensitivity of wet deposition chemistry to regional considerations, elevation, time of year, and atmospheric circulations.
RESUMO
Size-resolved aerosol samples were collected in Metro Manila between July 2018 and October 2019. Two Micro-Orifice Uniform Deposit Impactors (MOUDI) were deployed at Manila Observatory in Quezon City, Metro Manila with samples collected on a weekly basis for water-soluble speciation and mass quantification. Additional sets were collected for gravimetric and black carbon analysis, including during special events such as holidays. The unique aspect of the presented data is a year-long record with weekly frequency of size-resolved aerosol composition in a highly populated megacity where there is a lack of measurements. The data are suitable for research to understand the sources, evolution, and fate of atmospheric aerosols, as well as studies focusing on phenomena such as aerosol-cloud-precipitation-meteorology interactions, regional climate, boundary layer processes, and health effects. The dataset can be used to initialize, validate, and/or improve models and remote sensing algorithms.