Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Biochem Soc Trans ; 52(1): 279-289, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38385536

RESUMO

Diet is currently recognized as a major modifiable agent of human health. In particular, dietary nitrate has been increasingly explored as a strategy to modulate different physiological mechanisms with demonstrated benefits in multiple organs, including gastrointestinal, cardiovascular, metabolic, and endocrine systems. An intriguing exception in this scenario has been the brain, for which the evidence of the nitrate benefits remains controversial. Upon consumption, nitrate can undergo sequential reduction reactions in vivo to produce nitric oxide (•NO), a ubiquitous paracrine messenger that supports multiple physiological events such as vasodilation and neuromodulation. In the brain, •NO plays a key role in neurovascular coupling, a fine process associated with the dynamic regulation of cerebral blood flow matching the metabolic needs of neurons and crucial for sustaining brain function. Neurovascular coupling dysregulation has been associated with neurodegeneration and cognitive dysfunction during different pathological conditions and aging. We discuss the potential biological action of nitrate on brain health, concerning the molecular mechanisms underpinning this association, particularly via modulation of •NO-dependent neurovascular coupling. The impact of nitrate supplementation on cognitive performance was scrutinized through preclinical and clinical data, suggesting that intervention length and the health condition of the participants are determinants of the outcome. Also, it stresses the need for multimodal quantitative studies relating cellular and mechanistic approaches to function coupled with behavior clinical outputs to understand whether a mechanistic relationship between dietary nitrate and cognitive health is operative in the brain. If proven, it supports the exciting hypothesis of cognitive enhancement via diet.


Assuntos
Acoplamento Neurovascular , Humanos , Acoplamento Neurovascular/fisiologia , Nitratos/farmacologia , Óxido Nítrico/metabolismo , Suplementos Nutricionais , Cognição
2.
Anal Biochem ; 551: 43-50, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29753719

RESUMO

The evaluation of mitochondrial function provides the basis for the study of brain bioenergetics. However, analysis of brain mitochondrial respiration has been hindered by the low yield associated with mitochondria isolation procedures. Furthermore, isolating mitochondria or cells results in loss of the inherent complexity of the central nervous system. High-resolution respirometry (HRR), is a valuable tool to study mitochondrial function and has been used in diverse biological preparations ranging from isolated mitochondria to tissue homogenates and permeabilized tissue biopsies. Here we describe a novel methodology for evaluation of mitochondrial respiration using tissue preparations from the central nervous system, namely acute hippocampal slices from rodents, with HRR. By using acute intact hippocampal slices, tissue cytoarchitecture, intercellular communication and connectivity are preserved. Mitochondrial respiration was evaluated by using an adapted substrate-uncoupler-inhibitor titration (SUIT) protocol and the expected responses were observed. This methodology can be used to detect differences in mitochondrial function at the oxidative phosphorylation level and for studies with different brain oxidative substrates in physiological and neuropathological settings, by using a system that better represents the in vivo conditions than isolated mitochondria and/or cells.


Assuntos
Encéfalo/metabolismo , Hipocampo/metabolismo , Consumo de Oxigênio , Animais , Respiração Celular , Metabolismo Energético , Feminino , Técnicas In Vitro , Cinética , Masculino , Camundongos , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Ratos , Ratos Wistar
3.
Anal Chem ; 89(22): 12383-12390, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29067809

RESUMO

Seizures are paroxysmal events in which increased neuronal activity is accompanied by an increase in localized energetic demand. The ability to simultaneously record electrical and chemical events using a single sensor poses a promising approach to identify seizure onset zones in the brain. In the present work, we used ceramic-based platinum microelectrode arrays (MEAs) to perform high-frequency amperometric recording of local pO2 and local field potential (LFP)-related currents during seizures in the hippocampus of chronically implanted freely moving rats. Resting levels of O2 in the rodent brain varied between 6.6 ± 0.7 µM in the dentate gyrus (DG) region of the hippocampus and 22.1 ± 4.9 µM in the cerebral cortex. We also observed an expected increase in hippocampal pO2 (15 ± 4% from baseline) in response to tail pinch stress paradigm. Finally, induction of status epilepticus by intrahippocampal injection of pilocarpine induced biphasic changes in pO2 in the hippocampus. The initial dip at seizure onset (ΔO2 = -4.5 ± 0.7 µM) was followed by a prolonged hyperoxygenation phase (ΔO2 = +10.4 ± 2.9 µM). By acquiring the amperometry signal with a high sampling rate of 100 Hz we decomposed the raw signal in an oximetry recording (<1 Hz) and LFP recording (>1 Hz), demonstrating that each individual Pt site can simultaneously report changes in local pO2 and LFP-related currents during pilocarpine-induced seizure activity. This has high potential for translation into the clinical setting supported on intracranial grid or strip electrodes.


Assuntos
Técnicas Eletroquímicas , Epilepsia/diagnóstico , Oximetria , Oxigênio/sangue , Animais , Fenômenos Eletrofisiológicos , Epilepsia/sangue , Masculino , Microeletrodos , Ratos , Ratos Wistar
4.
Anal Chem ; 89(3): 1674-1683, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28208270

RESUMO

Ceramic-based multisite Pt microelectrode arrays (MEAs) were characterized for their basic electrochemical characteristics and used for in vivo measurements of oxygen with high resolution in the brain extracellular space. The microelectrode array sites showed a very smooth surface mainly composed of thin-film polycrystalline Pt, with some apparent nanoscale roughness that was not translated into an increased electrochemical active surface area. The electrochemical cyclic voltammetric behavior was characteristic of bulk Pt in both acidic and neutral media. In addition, complex plane impedance spectra showed the required low impedance (0.22 MΩ; 10.8 Ω cm2) at 1 kHz and very smooth electrode surfaces. The oxygen reduction reaction on the Pt surface proceeds as a single 4-electron reduction pathway at -0.6 V vs Ag/AgCl reference electrode. Cyclic voltammetry and amperometry demonstrate excellent electrocatalytic activity toward oxygen reduction in addition to a high sensitivity (-0.16 ± 0.02 nA µM-1) and a low limit of detection (0.33 ± 0.20 µM). Thus, these Pt MEAs provide an excellent microelectrode platform for multisite O2 recording in vivo in the extracellular space of the brain, demonstrated in anaesthetized rats, and hold promise for future in vivo studies in animal models of CNS disease and dysfunction.


Assuntos
Encéfalo/metabolismo , Cerâmica/química , Espectroscopia Dielétrica , Oxigênio/análise , Platina/química , Animais , Catálise , Eletrólitos/química , Masculino , Microeletrodos , Oxigênio/química , Ratos , Ratos Wistar
5.
Cell Mol Neurobiol ; 35(1): 33-44, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25274046

RESUMO

The increase in life expectancy is accompanied by an increased risk of developing neurodegenerative disorders and age is the most relevant risk factor for the appearance of cognitive decline. While decreased neuronal count has been proposed to be a major contributing factor to the appearance of age-associated cognitive decline, it appears to be insufficient to fully account for the decay in mental function in aged individuals. Nitric oxide ((•)NO) is a ubiquitous signaling molecule in the mammalian central nervous system. Closely linked to the activation of glutamatergic transmission in several structures of the brain, neuron-derived (•)NO can act as a neuromodulator in synaptic plasticity but has also been linked to neuronal toxicity and degenerative processes. Many studies have proposed that changes in the glutamate-(•)NO signaling pathway may be implicated in age-dependent cognitive decline and that the exact effect of such changes may be region specific. Due to its peculiar physical-chemical properties, namely hydrophobicity, small size, and rapid diffusion properties, the rate and pattern of (•)NO concentration changes are critical determinants for the understanding of its bioactivity in the brain. Here we show a detailed study of how (•)NO concentration dynamics change in the different regions of the brain of Fisher 344 rats (F344) during aging. Using microelectrodes inserted into the living brain of anesthetized F344 rats, we show here that glutamate-induced (•)NO concentration dynamics decrease in the hippocampus, striatum, and cerebral cortex as animals age. performance in behavior testing of short-term and spatial memory, suggesting that the impairment in the glutamate:nNOS pathway represents a functional critical event in cognitive decline during aging.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Óxido Nítrico/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Eletrodos Implantados , Masculino , Memória/fisiologia , Atividade Motora/fisiologia , Ratos , Ratos Endogâmicos F344
6.
Free Radic Biol Med ; 193(Pt 2): 669-675, 2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-36372286

RESUMO

Numerous epidemiological and preclinical studies have established a strong correlation between type 2 diabetes (T2DM) and cognitive impairment and T2DM is now established as an undisputable risk factor in different forms of dementia. However, the mechanisms underlying cognitive impairment in T2DM are still not fully understood. The temporal and spatial coupling between neuronal activity and cerebral blood flow (CBF) - neurovascular coupling (NVC) - is essential for normal brain function. Neuronal-derived nitric oxide (⦁NO) produced through the nNOS-NMDAr pathway, is recognized as a key messenger in NVC, especially in the hippocampus. Of note, impaired hippocampal perfusion in T2DM patients has been closely linked to learning and memory dysfunction. In this study, we aimed to investigate the functionality of NVC, in terms of neuronal-•NO signaling and spatial memory performance, in young Goto-Kakizaki (GK) rats, a non-obese model of T2DM. For that, we performed direct and simultaneous measurements of •NO concentration dynamics and microvascular CBF changes in the hippocampus upon glutamatergic activation. We found that limited •NO bioavailability, connected to shorter and faster •NO transients in response to glutamatergic neuronal activation, is associated with decreased hemodynamic responses and a decline in spatial memory performance. This evidence supports a close mechanistic association between neuronal-triggered •NO concentration dynamics in the hippocampus, local microvascular responses, and cognitive performance in young diabetic animals, establishing the functionality of NVC as a critical early factor to consider in the cascade of events leading to cognitive decline in T2DM. These results suggest that strategies capable to overcome the limited •NO bioavailability in early stages of T2DM and maintaining a functional NVC pathway may configure pertinent therapeutic approaches to mitigate the risk for cognitive impairment in T2DM.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Acoplamento Neurovascular , Animais , Ratos , Acoplamento Neurovascular/fisiologia , Óxido Nítrico/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Experimental/complicações , Hipocampo/metabolismo
7.
Hippocampus ; 21(6): 622-30, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20169537

RESUMO

Nitric oxide ((•)NO) is a labile endogenous free radical produced upon glutamatergic neuronal activity in hippocampus by neuronal nitric oxide synthase (nNOS), where it acts as a modulator of both synaptic plasticity and cell death associated with neurodegeneration. The low CNS levels and fast time dynamics of this molecule require the use of rapid analytical methods that can more accurately describe its signaling in vivo. This is critical for understanding how the kinetics of (•)NO-dependent signaling pathways is translated into physiological or pathological functions. In these studies, we used (•)NO selective microelectrodes coupled with rapid electrochemical recording techniques to characterize for the first time the concentration dynamics of (•)NO endogenously produced in hippocampus in vivo following activation of ionotropic glutamate receptors. Both L-glutamate (1-100 mM) and N-methyl-D-aspartate (NMDA; 0.01-5 mM) produced transient, dose-dependent increases in extracellular (•)NO concentration. The production of (•)NO in the hippocampus by glutamate was decreased by the nNOS inhibitor 7-NI. Intraperitoneal administration of the NMDA receptor blocker, MK-801, and the inhibitor of α-amino-3-hydroxy-5-methyl-4-isoazolepropionic acid (AMPA) receptor, NBQX, applied locally greatly attenuated glutamate-evoked overflow of (•)NO. Thus, (•)NO overflow elicited by activation of glutamate receptors appeared to result from an integrated activation of ionotropic glutamate receptors, both of the NMDA and AMPA receptors subtypes. Additionally, distinct concentration dynamics was observed in the trisynaptic loop with stronger and longer lasting effects of glutamate activation on (•)NO overflow seen in the CA1 region as compared with the dentate gyrus. Overall, the results provide a quantitative and temporal basis for a better understanding of (•)NO activity in the rat hippocampus.


Assuntos
Região CA1 Hipocampal/metabolismo , Giro Denteado/metabolismo , Óxido Nítrico , Receptores de Glutamato/metabolismo , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Giro Denteado/efeitos dos fármacos , Maleato de Dizocilpina/metabolismo , Maleato de Dizocilpina/farmacologia , Técnicas Eletroquímicas/métodos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Masculino , Microeletrodos , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacologia , Neurônios/metabolismo , Óxido Nítrico/análise , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Óxido Nítrico Sintase Tipo I/metabolismo , Quinoxalinas/metabolismo , Quinoxalinas/farmacologia , Ratos , Ratos Wistar , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/metabolismo , Receptores de Glutamato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo
8.
Front Physiol ; 12: 729201, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744769

RESUMO

The brain has impressive energy requirements and paradoxically, very limited energy reserves, implying its huge dependency on continuous blood supply. Aditionally, cerebral blood flow must be dynamically regulated to the areas of increased neuronal activity and thus, of increased metabolic demands. The coupling between neuronal activity and cerebral blood flow (CBF) is supported by a mechanism called neurovascular coupling (NVC). Among the several vasoactive molecules released by glutamatergic activation, nitric oxide (•NO) is recognized to be a key player in the process and essential for the development of the neurovascular response. Classically, •NO is produced in neurons upon the activation of the glutamatergic N-methyl-D-aspartate (NMDA) receptor by the neuronal isoform of nitric oxide synthase and promotes vasodilation by activating soluble guanylate cyclase in the smooth muscle cells of the adjacent arterioles. This pathway is part of a more complex network in which other molecular and cellular intervenients, as well as other sources of •NO, are involved. The elucidation of these interacting mechanisms is fundamental in understanding how the brain manages its energy requirements and how the failure of this process translates into neuronal dysfunction. Here, we aimed to provide an integrated and updated perspective of the role of •NO in the NVC, incorporating the most recent evidence that reinforces its central role in the process from both viewpoints, as a physiological mediator and a pathological stressor. First, we described the glutamate-NMDA receptor-nNOS axis as a central pathway in NVC, then we reviewed the link between the derailment of the NVC and neuronal dysfunction associated with neurodegeneration (with a focus on Alzheimer's disease). We further discussed the role of oxidative stress in the NVC dysfunction, specifically by decreasing the •NO bioavailability and diverting its bioactivity toward cytotoxicity. Finally, we highlighted some strategies targeting the rescue or maintenance of •NO bioavailability that could be explored to mitigate the NVC dysfunction associated with neurodegenerative conditions. In line with this, the potential modulatory effects of dietary nitrate and polyphenols on •NO-dependent NVC, in association with physical exercise, may be used as effective non-pharmacological strategies to promote the •NO bioavailability and to manage NVC dysfunction in neuropathological conditions.

9.
J Alzheimers Dis ; 82(4): 1619-1633, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34219714

RESUMO

BACKGROUND: Ample evidence from clinical and pre-clinical studies suggests mid-life hypercholesterolemia as a risk factor for developing Alzheimer's disease (AD) at a later age. Hypercholesterolemia induced by dietary habits can lead to vascular perturbations that increase the risk of developing sporadic AD. OBJECTIVE: To investigate the effects of a high fat/cholesterol diet (HFCD) as a risk factor for AD by using a rodent model of AD and its correspondent control (healthy animals). METHODS: We compared the effect of a HFCD in normal mice (non-transgenic mice, NTg) and the triple transgenic mouse model of AD (3xTgAD). We evaluated cognitive performance in relation to changes in oxidative metabolism and neuron-derived nitric oxide (•NO) concentration dynamics in hippocampal slices as well as histochemical staining of markers of the neurovascular unit. RESULTS: In NTg, the HFCD produced only moderate hypercholesterolemia but significant decline in spatial memory was observed. A tendency for decrease in •NO production was accompanied by compromised mitochondrial function with decrease in spare respiratory capacity. In 3xTgAD mice, a robust increase in plasma cholesterol levels with the HFCD did not worsen cognitive performance but did induce compromise of mitochondrial function and significantly decreased •NO production. We found increased staining of biomarkers for astrocyte endfeet and endothelial cells in 3xTgAD hippocampi, which was further increased by the HFCD. CONCLUSION: A short term (8 weeks) intervention with HFCD can produce an AD-like phenotype even in the absence of overt systemic hypercholesterolemia and highlights mitochondrial dysfunction as a link between hypercholesterolemia and sporadic AD.


Assuntos
Doença de Alzheimer/genética , Colesterol/metabolismo , Dieta Hiperlipídica , Hipocampo/metabolismo , Camundongos Transgênicos , Mitocôndrias/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos
10.
Biosensors (Basel) ; 11(8)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34436079

RESUMO

The impaired blood flow to the brain causes a decrease in the supply of oxygen that can result in cerebral ischemia; if the blood flow is not restored quickly, neuronal injury or death will occur. Under hypoxic conditions, the production of nitric oxide (●NO), via the classical L-arginine-●NO synthase pathway, is reduced, which can compromise ●NO-dependent vasodilation. However, the alternative nitrite (NO2-) reduction to ●NO, under neuronal hypoxia and ischemia conditions, has been viewed as an in vivo storage pool of ●NO, complementing its enzymatic synthesis. Brain research is thus demanding suitable tools to probe nitrite's temporal and spatial dynamics in vivo. In this work, we propose a new method for the real-time measurement of nitrite concentration in the brain extracellular space, using fast-scan cyclic voltammetry (FSCV) and carbon microfiber electrodes as sensing probes. In this way, nitrite was detected anodically and in vitro, in the 5-500 µM range, in the presence of increasing physiological concentrations of ascorbate (100-500 µM). These sensors were then tested for real-time and in vivo recordings in the anesthetized rat hippocampus; using fast electrochemical techniques, local and reproducible transients of nitrite oxidation signals were observed, upon pressure ejection of an exogenous nitrite solution into the brain tissue. Nitrite microsensors are thus a valuable tool for investigating the role of this inorganic anion in brain redox signaling.


Assuntos
Ácido Ascórbico , Encéfalo , Nitritos , Animais , Técnicas Eletroquímicas , Espaço Extracelular , Masculino , Microeletrodos , Neurônios , Óxido Nítrico , Oxirredução , Oxigênio , Ratos
11.
Bioelectrochemistry ; 130: 107325, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31295700

RESUMO

In order to understand how energy metabolism adapts to changes in neuronal activity it is imperative to perform direct measurements of the flux of glucose (and other metabolites) in brain tissue. Metabolic studies using brain slice preparations are attractive due to the controllability of recording conditions, absence of anesthetic interference and refined animal experimental protocols. In this work, taking advantage of the small size and versatility of carbon fiber microelectrodes (CFMs), we aimed to develop an amperometric glucose microbiosensor suitable for glucose measurement in brain slices. Potentiostatic- or galvanostatic-driven platinum electrodeposition was used to improve the analytical properties of CFMs towards detection of hydrogen peroxide. The platinized CFMs served as platform for the development of glucose microbiosensors through the immobilization of glucose-oxidase (GOx) by cross-linking with glutaraldehyde in the presence of BSA. Selective glucose measurements were attained by modifying the electrode with a permselective layer of meta-phenylenediamine and by integrating a null sensor. The in vitro characterization studies support the good analytical features of the CFM/Pt-based microbiosensors to reliably measure glucose in brain tissue. The ex vivo experiments in rodent hippocampal slices validated their suitability to measure evoked changes in extracellular glucose. This approach, encompassing the use of null sensor to cross-check the selectivity on a moment-to-moment basis, allowed us to provide the temporal and quantitative profile of extracellular glucose changes in hippocampal slices following a spreading depolarization event. Overall, these results support the potential of these microbiosensors to be used as a valuable tool to investigate the complex nature of glucose utilization in brain tissue linked to neuronal activation both in physiological and pathological conditions.


Assuntos
Técnicas Biossensoriais/métodos , Fibra de Carbono/química , Glucose/análise , Platina/química , Animais , Aspergillus niger/enzimologia , Encéfalo/metabolismo , Química Encefálica , Galvanoplastia , Enzimas Imobilizadas/química , Glucose/metabolismo , Glucose Oxidase/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microeletrodos , Ratos Wistar
12.
Methods Enzymol ; 441: 351-67, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18554545

RESUMO

During the last two decades nitric oxide (.NO) gas has emerged as a novel and ubiquitous intercellular modulator of cell functions. In the brain, .NO is implicated in mechanisms of synaptic plasticity but it is also involved in cell death pathways underlying several neurological diseases. Because of its hydrophobicity, small size, and rapid diffusion properties, the rate and pattern of .NO concentration changes are critical determinants for the understanding of its diverse actions in the brain. .NO measurement in vivo has been a challenging task due to its low concentration, short half-life, and high reactivity with other biological molecules, such as superoxide radical, thiols, and heme proteins. Electrochemical methods are versatile approaches for detecting and monitoring various neurotransmitters. When associated with microelectrodes inserted into the brain they provide high temporal and spatial resolution, allowing measurements of neurochemicals in physiological environments in a real-time fashion. To date, electrochemical detection of .NO is the only available technique that provides a high sensitivity, low detection limit, selectivity, and fast response to measure the concentration dynamics of .NO in vivo. We have used carbon fiber microelectrodes coated with two layers of Nafion and o-phenylenediamine to monitor the rate and pattern of .NO change in the rat brain in vivo. The analytical performance of microelectrodes was assessed in terms of sensitivity, detection limit, and selectivity ratios against major interferents: ascorbate, dopamine, noradrenaline, serotonin, and nitrite. For the in vivo recording experiments, we used a microelectrode/micropipette array inserted into the brain using a stereotaxic frame. The characterization of in vivo signals was assessed by electrochemical and pharmacological verification. Results support our experimental conditions that the measured oxidation current reflects variations in the .NO concentration in brain extracellular space. We report results from recordings in hippocampus and striatum upon stimulation of N-methyl-d-aspartate-subtype glutamate receptors. Moreover, the kinetics of .NO disappearance in vivo following pressure ejection of a .NO solution is also addressed.


Assuntos
Anestesia , Encéfalo/metabolismo , Óxido Nítrico/análise , Animais , Eletroquímica , Humanos , Óxido Nítrico/metabolismo , Ratos
13.
J Agric Food Chem ; 56(10): 3798-804, 2008 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-18454545

RESUMO

Dietary phenolic compounds may act as antioxidants in vitro, but because of structural modifications during absorption, its role based on concentrations high enough to afford an antioxidant protection needs to be re-evaluated. We have explored the hypothesis that red wine procyanidins interact with low density lipoproteins (LDL) and that, at this location, the phenolic compounds efficiently protect LDL from oxidation and maintain LDL alpha-tocopherol at a high steady state concentration by recycling it back from the alpha-tocopheroxyl radical. To this end, human plasma was supplemented with wine procyanidins and isolated LDL were challenged with a constant flux of peroxyl radicals. As compared with LDL from plasma-free procyanidins, those LDL better resisted lipid oxidation and exhibited longer lag-phases of alpha-tocopherol consumption. The procyanidins, depending on their structure, were able to reduce the UV-induced alpha-tocopherol radical in a micellar system, as evidenced by electron paramagnetic ressonance. Mechanistically, the protection of LDL was interpreted in terms of quenching of peroxyl radicals and the recycling of alpha-tocopherol by the procyanidins bound to the lipoproteins. These results support the notion that, in human plasma, the procyanidins, via binding to LDL, may act as efficient local antioxidants.


Assuntos
Peroxidação de Lipídeos/efeitos dos fármacos , Lipoproteínas LDL/sangue , Proantocianidinas/farmacologia , Vinho/análise , alfa-Tocoferol/sangue , Radicais Livres/química , Humanos , Proantocianidinas/sangue , alfa-Tocoferol/química
14.
Front Physiol ; 9: 913, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30065657

RESUMO

Neurovascular and neurometabolic coupling are critical and complex processes underlying brain function. Perturbations in the regulation of these processes are, likely, early dysfunctional alterations in pathological brain aging and age-related neurodegeneration. Evidences support the role of nitric oxide (•NO) as a key messenger both in neurovascular coupling, by signaling from neurons to blood vessels, and in neurometabolic coupling, by modulating O2 utilization by mitochondria. In the present study, we investigated the functionality of neurovascular and neurometabolic coupling in connection to •NO signaling and in association to cognitive performance during aging. For this, we performed in vivo simultaneous measurements of •NO, O2 and cerebral blood flow (CBF) in the hippocampus of F344 rats along chronological age in response to glutamatergic activation and in correlation with cognitive performance. Firstly, it is evidenced the temporal sequence of events upon glutamate stimulation of hippocampal dentate gyrus, encompassing the local and transitory increase of •NO followed by transitory local changes of CBF and pO2. Specifically, the transient increase of •NO is followed by an increase of CBF and biphasic changes of the local pO2. We observed that, although the glutamate-induced •NO dynamics were not significantly affected by aging, the correspondent hemodynamic was progressively diminished accompanying a decline in learning and memory. Noteworthy, in spite of a compromised blood supply, in aged rats we observed an increased ΔpO2 associated to the hemodynamic response, suggestive of a decrease in the global metabolic rate of O2. Furthermore, the impairment in the neurovascular coupling observed along aging in F344 rats was mimicked in young rats by promoting an unbalance in redox status toward oxidation via intracellular generation of superoxide radical. This observation strengthens the idea that oxidative stress may have a critical role in the neurovascular uncoupling underlying brain aging and dysfunction. Overall, data supports an impairment of neurovascular response in connection with cognition decline due to oxidative environment-dependent compromised •NO signaling from neurons to vessels during aging.

15.
Exp Neurol ; 291: 36-43, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28161255

RESUMO

Nitric oxide (NO)-dependent pathways and cerebrovascular dysfunction have been shown to contribute to the cognitive decline and neurodegeneration observed in Alzheimer's disease (AD) but whether they represent initial factors or later changes of the disease is still a matter of debate. In this work, we aimed at investigating whether and to what extent neuronal-derived NO signaling and related neurovascular coupling are impaired along aging in the hippocampus of the triple transgenic mouse model of Alzheimer's Disease (3xTg-AD). We performed a longitudinal study combining behavior studies, in vivo simultaneous measurements of NO concentration gradients and cerebral blood flow (CBF), along with detection of NO synthase (NOS) and markers of nitroxidative stress. Our results revealed an impairment in the neurovascular coupling along aging in the 3xTg-AD mice which preceded obvious cognitive decline. This impairment was characterized by diminished CBF changes in response to normal or even increased NO signals and associated with markers of nitroxidative stress. The results suggest that impairment in neurovascular coupling is primarily due to cerebrovascular dysfunction, rather than due to dysfunctional NO signaling from neurons to blood vessels. Overall, this work supports cerebrovascular dysfunction as a fundamental underlying process in AD pathology.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Circulação Cerebrovascular/fisiologia , Acoplamento Neurovascular/fisiologia , Óxido Nítrico/metabolismo , Transdução de Sinais/fisiologia , Difosfato de Adenosina/farmacologia , Fatores Etários , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Peso Corporal/genética , Peso Corporal/fisiologia , Circulação Cerebrovascular/efeitos dos fármacos , Circulação Cerebrovascular/genética , Modelos Animais de Doenças , Agonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/farmacologia , Humanos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Acoplamento Neurovascular/efeitos dos fármacos , Acoplamento Neurovascular/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Presenilina-1/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteínas tau/genética
16.
Free Radic Biol Med ; 108: 668-682, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28435052

RESUMO

The strict energetic demands of the brain require that nutrient supply and usage be fine-tuned in accordance with the specific temporal and spatial patterns of ever-changing levels of neuronal activity. This is achieved by adjusting local cerebral blood flow (CBF) as a function of activity level - neurovascular coupling - and by changing how energy substrates are metabolized and shuttled amongst astrocytes and neurons - neuroenergetic coupling. Both activity-dependent increase of CBF and O2 and glucose utilization by active neural cells are inextricably linked, establishing a functional metabolic axis in the brain, the neurovascular-neuroenergetic coupling axis. This axis incorporates and links previously independent processes that need to be coordinated in the normal brain. We here review evidence supporting the role of neuronal-derived nitric oxide (•NO) as the master regulator of this axis. Nitric oxide is produced in tight association with glutamatergic activation and, diffusing several cell diameters, may interact with different molecular targets within each cell type. Hemeproteins such as soluble guanylate cyclase, cytochrome c oxidase and hemoglobin, with which •NO reacts at relatively fast rates, are but a few of the key in determinants of the regulatory role of •NO in the neurovascular-neuroenergetic coupling axis. Accordingly, critical literature supporting this concept is discussed. Moreover, in view of the controversy regarding the regulation of catabolism of different neural cells, we further discuss key aspects of the pathways through which •NO specifically up-regulates glycolysis in astrocytes, supporting lactate shuttling to neurons for oxidative breakdown. From a biomedical viewpoint, derailment of neurovascular-neuroenergetic axis is precociously linked to aberrant brain aging, cognitive impairment and neurodegeneration. Thus, we summarize current knowledge of how both neurovascular and neuroenergetic coupling are compromised in aging, traumatic brain injury, epilepsy and age-associated neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, suggesting that a shift in cellular redox balance may contribute to divert •NO bioactivity from regulation to dysfunction.


Assuntos
Envelhecimento/fisiologia , Astrócitos/fisiologia , Encéfalo/fisiologia , Doenças Neurodegenerativas/metabolismo , Neurônios/fisiologia , Acoplamento Neurovascular , Animais , Circulação Cerebrovascular , Metabolismo Energético , Glutamatos/metabolismo , Humanos , Óxido Nítrico/metabolismo
17.
Sci Rep ; 7(1): 6764, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28754993

RESUMO

Spreading depolarization (SD) is a slow propagating wave of strong depolarization of neural cells, implicated in several neuropathological conditions. The breakdown of brain homeostasis promotes significant hemodynamic and metabolic alterations, which impacts on neuronal function. In this work we aimed to develop an innovative multimodal approach, encompassing metabolic, electric and hemodynamic measurements, tailored but not limited to study SD. This was based on a novel dual-biosensor based on microelectrode arrays designed to simultaneously monitor lactate and glucose fluctuations and ongoing neuronal activity with high spatial and temporal resolution. In vitro evaluation of dual lactate-glucose microbiosensor revealed an extended linear range, high sensitivity and selectivity, fast response time and low oxygen-, temperature- and pH- dependencies. In anesthetized rats, we measured with the same array a significant drop in glucose concentration matched to a rise in lactate and concurrently with pronounced changes in the spectral profile of LFP-related currents during episodes of mechanically-evoked SD. This occurred along with the stereotypical hemodynamic response of the SD wave. Overall, this multimodal approach successfully demonstrates the capability to monitor metabolic alterations and ongoing electrical activity, thus contributing to a better understanding of the metabolic changes occurring in the brain following SD.


Assuntos
Técnicas Biossensoriais , Depressão Alastrante da Atividade Elétrica Cortical , Fenômenos Eletrofisiológicos , Glucose/metabolismo , Ácido Láctico/metabolismo , Animais , Glucose Oxidase/metabolismo , Concentração de Íons de Hidrogênio , Cinética , L-Lactato Desidrogenase/metabolismo , Masculino , Microeletrodos , Oxigênio/análise , Ratos Wistar , Reprodutibilidade dos Testes , Temperatura
18.
Toxicol Lett ; 164(1): 24-36, 2006 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-16371244

RESUMO

The effect of seven natural prenylated flavones in DNA synthesis of two human breast cancer cell lines, the estrogen-dependent ER (+) MCF-7 and the estrogen-independent ER (-) MDA-MB-231 cells, was evaluated. Flavones with an isopentenyl group at C-8 and a ring linking C-3 and C-2' presented a biphasic effect in DNA synthesis of ER (+) MCF-7 and displayed a stimulation at low concentrations (0.02-0.78 microM) whilst at higher concentrations (> 3.12 microM) inhibition was observed. No stimulation was observed in ER (-) MDA-MB-231. In contrast, all the flavones exhibited an antiproliferative effect in both ER (-) and ER (+). Curiously, the inhibition of DNA synthesis was accompanied by a high capacity of these cells to reduce MTT, which was concurrent with the appearance of an intense intracytoplasmic vacuolization. The accumulation of the formazan product in these vacuoles could justify the enhancements of MTT reduction. The characterization of these vacuoles with the autophagic marker monodansylcadaverine (MDC) is consistent with autophagic vacuoles, which led to the suggestion that these flavones could induce autophagy in both ER (+) and ER (-) breast cancer cell lines.


Assuntos
Neoplasias da Mama/patologia , DNA de Neoplasias/biossíntese , Flavonas/farmacologia , Receptores de Estrogênio/biossíntese , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Flavonas/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Vacúolos/efeitos dos fármacos , Vacúolos/patologia
19.
Neurobiol Aging ; 46: 84-95, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27460153

RESUMO

Age-dependent changes in nitric oxide ((•)NO) concentration dynamics may play a significant role in both decaying synaptic and metabolic functions in Alzheimer's disease (AD). This neuromodulator acts presynaptically to increase vesicle release and glutamatergic transmission and also regulates mitochondrial function. Under conditions of altered intracellular redox environment, (•)NO may react and produce reactive species such as peroxynitrite. Using the triple transgenic mouse model of AD (3xTgAD), we investigated age-dependent changes in the glutamate-(•)NO axis in the hippocampus. Direct measurement of (•)NO concentration dynamics revealed a significant increase in N-methyl-D-aspartate type receptor-evoked peak (•)NO in the 3xTgAD model at an early age. Aging produced a decrease in peak (•)NO accompanied by significant decrease in production and decay rates in the transgenic model. Evaluation of energy metabolism revealed age-dependent decrease in basal oxygen consumption rate, a general decrease in mitochondrial oxidative phosphorylation parameters, and loss in mitochondrial sparing capacity in both genotypes. Finally, we observed age-dependent increase in 3-nitrotyrosine residues in the hippocampus, consistent with a putative shift in (•)NO bioactivity toward oxidative chemistry associated with neurotoxicity.


Assuntos
Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Neurotransmissores/metabolismo , Óxido Nítrico/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Modelos Animais de Doenças , Metabolismo Energético , Ácido Glutâmico/fisiologia , Camundongos Transgênicos , Microeletrodos , Mitocôndrias/metabolismo , Neurotransmissores/fisiologia , Óxido Nítrico/fisiologia , Fosforilação Oxidativa , Consumo de Oxigênio , Ácido Peroxinitroso/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , Transmissão Sináptica , Tirosina/análogos & derivados , Tirosina/metabolismo
20.
Front Aging Neurosci ; 7: 103, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26074816

RESUMO

The functional and structural integrity of the brain requires local adjustment of blood flow and regulated delivery of metabolic substrates to meet the metabolic demands imposed by neuronal activation. This process-neurovascular coupling-and ensued alterations of glucose and oxygen metabolism-neurometabolic coupling-are accomplished by concerted communication between neural and vascular cells. Evidence suggests that neuronal-derived nitric oxide ((•)NO) is a key player in both phenomena. Alterations in the mechanisms underlying the intimate communication between neural cells and vessels ultimately lead to neuronal dysfunction. Both neurovascular and neurometabolic coupling are perturbed during brain aging and in age-related neuropathologies in close association with cognitive decline. However, despite decades of intense investigation, many aspects remain poorly understood, such as the impact of these alterations. In this review, we address neurovascular and neurometabolic derailment in aging and Alzheimer's disease (AD), discussing its significance in connection with (•)NO-related pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA