Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.323
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(15): 4032-4047.e31, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34171309

RESUMO

Although mutations in DNA are the best-studied source of neoantigens that determine response to immune checkpoint blockade, alterations in RNA splicing within cancer cells could similarly result in neoepitope production. However, the endogenous antigenicity and clinical potential of such splicing-derived epitopes have not been tested. Here, we demonstrate that pharmacologic modulation of splicing via specific drug classes generates bona fide neoantigens and elicits anti-tumor immunity, augmenting checkpoint immunotherapy. Splicing modulation inhibited tumor growth and enhanced checkpoint blockade in a manner dependent on host T cells and peptides presented on tumor MHC class I. Splicing modulation induced stereotyped splicing changes across tumor types, altering the MHC I-bound immunopeptidome to yield splicing-derived neoepitopes that trigger an anti-tumor T cell response in vivo. These data definitively identify splicing modulation as an untapped source of immunogenic peptides and provide a means to enhance response to checkpoint blockade that is readily translatable to the clinic.


Assuntos
Neoplasias/genética , Neoplasias/imunologia , Splicing de RNA/genética , Animais , Apresentação de Antígeno/efeitos dos fármacos , Apresentação de Antígeno/imunologia , Antígenos de Neoplasias/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Epitopos/imunologia , Etilenodiaminas/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Hematopoese/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia , Inflamação/patologia , Camundongos Endogâmicos C57BL , Peptídeos/metabolismo , Isoformas de Proteínas/metabolismo , Pirróis/farmacologia , Splicing de RNA/efeitos dos fármacos , Sulfonamidas/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
2.
Nature ; 613(7942): 195-202, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36544023

RESUMO

Inhibition of the tumour suppressive function of p53 (encoded by TP53) is paramount for cancer development in humans. However, p53 remains unmutated in the majority of cases of glioblastoma (GBM)-the most common and deadly adult brain malignancy1,2. Thus, how p53-mediated tumour suppression is countered in TP53 wild-type (TP53WT) GBM is unknown. Here we describe a GBM-specific epigenetic mechanism in which the chromatin regulator bromodomain-containing protein 8 (BRD8) maintains H2AZ occupancy at p53 target loci through the EP400 histone acetyltransferase complex. This mechanism causes a repressive chromatin state that prevents transactivation by p53 and sustains proliferation. Notably, targeting the bromodomain of BRD8 displaces H2AZ, enhances chromatin accessibility and engages p53 transactivation. This in turn enforces cell cycle arrest and tumour suppression in TP53WT GBM. In line with these findings, BRD8 is highly expressed with H2AZ in proliferating single cells of patient-derived GBM, and is inversely correlated with CDKN1A, a canonical p53 target that encodes p21 (refs. 3,4). This work identifies BRD8 as a selective epigenetic vulnerability for a malignancy for which treatment has not improved for decades. Moreover, targeting the bromodomain of BRD8 may be a promising therapeutic strategy for patients with TP53WT GBM.


Assuntos
Epigênese Genética , Glioblastoma , Fatores de Transcrição , Proteína Supressora de Tumor p53 , Adulto , Humanos , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proliferação de Células
3.
Mol Cell ; 81(17): 3604-3622.e10, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34358447

RESUMO

The transformed state in acute leukemia requires gene regulatory programs involving transcription factors and chromatin modulators. Here, we uncover an IRF8-MEF2D transcriptional circuit as an acute myeloid leukemia (AML)-biased dependency. We discover and characterize the mechanism by which the chromatin "reader" ZMYND8 directly activates IRF8 in parallel with the MYC proto-oncogene through their lineage-specific enhancers. ZMYND8 is essential for AML proliferation in vitro and in vivo and associates with MYC and IRF8 enhancer elements that we define in cell lines and in patient samples. ZMYND8 occupancy at IRF8 and MYC enhancers requires BRD4, a transcription coactivator also necessary for AML proliferation. We show that ZMYND8 binds to the ET domain of BRD4 via its chromatin reader cassette, which in turn is required for proper chromatin occupancy and maintenance of leukemic growth in vivo. Our results rationalize ZMYND8 as a potential therapeutic target for modulating essential transcriptional programs in AML.


Assuntos
Fatores Reguladores de Interferon/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Cromatina/genética , Elementos Facilitadores Genéticos/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Fatores Reguladores de Interferon/genética , Leucemia Mieloide Aguda/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Proto-Oncogene Mas , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Proteínas Supressoras de Tumor/genética
4.
Mol Cell ; 69(6): 1017-1027.e6, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29526696

RESUMO

The lineage-specific transcription factor (TF) MEF2C is often deregulated in leukemia. However, strategies to target this TF have yet to be identified. Here, we used a domain-focused CRISPR screen to reveal an essential role for LKB1 and its Salt-Inducible Kinase effectors (SIK3, in a partially redundant manner with SIK2) to maintain MEF2C function in acute myeloid leukemia (AML). A key phosphorylation substrate of SIK3 in this context is HDAC4, a repressive cofactor of MEF2C. Consequently, targeting of LKB1 or SIK3 diminishes histone acetylation at MEF2C-bound enhancers and deprives leukemia cells of the output of this essential TF. We also found that MEF2C-dependent leukemias are sensitive to on-target chemical inhibition of SIK activity. This study reveals a chemical strategy to block MEF2C function in AML, highlighting how an oncogenic TF can be disabled by targeting of upstream kinases.


Assuntos
Leucemia Mieloide Aguda/enzimologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Acetilação , Animais , Antineoplásicos/farmacologia , Proliferação de Células , Elementos Facilitadores Genéticos , Regulação Enzimológica da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Células HEK293 , Células Hep G2 , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Células K562 , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Camundongos , Células NIH 3T3 , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Células THP-1 , Células U937
5.
Genes Dev ; 32(13-14): 915-928, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29945888

RESUMO

Small cell lung cancer (SCLC) is widely considered to be a tumor of pulmonary neuroendocrine cells; however, a variant form of this disease has been described that lacks neuroendocrine features. Here, we applied domain-focused CRISPR screening to human cancer cell lines to identify the transcription factor (TF) POU2F3 (POU class 2 homeobox 3; also known as SKN-1a/OCT-11) as a powerful dependency in a subset of SCLC lines. An analysis of human SCLC specimens revealed that POU2F3 is expressed exclusively in variant SCLC tumors that lack expression of neuroendocrine markers and instead express markers of a chemosensory lineage known as tuft cells. Using chromatin- and RNA-profiling experiments, we provide evidence that POU2F3 is a master regulator of tuft cell identity in a variant form of SCLC. Moreover, we show that most SCLC tumors can be classified into one of three lineages based on the expression of POU2F3, ASCL1, or NEUROD1. Our CRISPR screens exposed other unique dependencies in POU2F3-expressing SCLC lines, including the lineage TFs SOX9 and ASCL2 and the receptor tyrosine kinase IGF1R (insulin-like growth factor 1 receptor). These data reveal POU2F3 as a cell identity determinant and a dependency in a tuft cell-like variant of SCLC, which may reflect a previously unrecognized cell of origin or a trans-differentiation event in this disease.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/fisiopatologia , Fatores de Transcrição de Octâmero/genética , Fatores de Transcrição de Octâmero/metabolismo , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/fisiopatologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Linhagem Celular Tumoral , Linhagem da Célula , Humanos , Pulmão/patologia , Camundongos , Receptor IGF Tipo 1/metabolismo
6.
Circulation ; 149(13): 1004-1015, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-37886839

RESUMO

BACKGROUND: The adult mammalian heart is incapable of regeneration, whereas a transient regenerative capacity is maintained in the neonatal heart, primarily through the proliferation of preexisting cardiomyocytes. Neonatal heart regeneration after myocardial injury is accompanied by an expansion of cardiac fibroblasts and compositional changes in the extracellular matrix. Whether and how these changes influence cardiomyocyte proliferation and heart regeneration remains to be investigated. METHODS: We used apical resection and myocardial infarction surgical models in neonatal and adult mice to investigate extracellular matrix components involved in heart regeneration after injury. Single-cell RNA sequencing and liquid chromatography-mass spectrometry analyses were used for versican identification. Cardiac fibroblast-specific Vcan deletion was achieved using the mouse strains Col1a2-2A-CreER and Vcanfl/fl. Molecular signaling pathways related to the effects of versican were assessed through Western blot, immunostaining, and quantitative reverse transcription polymerase chain reaction. Cardiac fibrosis and heart function were evaluated by Masson trichrome staining and echocardiography, respectively. RESULTS: Versican, a cardiac fibroblast-derived extracellular matrix component, was upregulated after neonatal myocardial injury and promoted cardiomyocyte proliferation. Conditional knockout of Vcan in cardiac fibroblasts decreased cardiomyocyte proliferation and impaired neonatal heart regeneration. In adult mice, intramyocardial injection of versican after myocardial infarction enhanced cardiomyocyte proliferation, reduced fibrosis, and improved cardiac function. Furthermore, versican augmented the proliferation of human induced pluripotent stem cell-derived cardiomyocytes. Mechanistically, versican activated integrin ß1 and downstream signaling molecules, including ERK1/2 and Akt, thereby promoting cardiomyocyte proliferation and cardiac repair. CONCLUSIONS: Our study identifies versican as a cardiac fibroblast-derived pro-proliferative proteoglycan and clarifies the role of versican in promoting adult cardiac repair. These findings highlight its potential as a therapeutic factor for ischemic heart diseases.


Assuntos
Traumatismos Cardíacos , Células-Tronco Pluripotentes Induzidas , Infarto do Miocárdio , Animais , Humanos , Camundongos , Animais Recém-Nascidos , Proliferação de Células , Coração , Traumatismos Cardíacos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mamíferos , Miócitos Cardíacos/metabolismo , Regeneração , Versicanas/genética , Versicanas/metabolismo
7.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38466135

RESUMO

In the animal kingdom, sexually dimorphic color variation is a widespread phenomenon that significantly influences survival and reproductive success. However, the genetic underpinnings of this variation remain inadequately understood. Our investigation into sexually dimorphic color variation in the desert-dwelling Guinan population of the toad-headed agamid lizard (Phrynocephalus putjatai) utilized a multidisciplinary approach, encompassing phenotypic, ultrastructural, biochemical, genomic analyses, and behavioral experiments. Our findings unveil the association between distinct skin colorations and varying levels of carotenoid and pteridine pigments. The red coloration in males is determined by a genomic region on chromosome 14, housing four pigmentation genes: BCO2 and three 6-pyruvoyltetrahydropterin synthases. A Guinan population-specific nonsynonymous single nucleotide polymorphism in BCO2 is predicted to alter the electrostatic potential within the binding domain of the BCO2-ß-carotene complex, influencing their interaction. Additionally, the gene MAP7 on chromosome 2 emerges as a potential contributor to the blue coloration in subadults and adult females. Sex-specific expression patterns point to steroid hormone-associated genes (SULT2B1 and SRD5A2) as potential upstream regulators influencing sexually dimorphic coloration. Visual modeling and field experiments support the potential selective advantages of vibrant coloration in desert environments. This implies that natural selection, potentially coupled with assortative mating, might have played a role in fixing color alleles, contributing to prevalence in the local desert habitat. This study provides novel insights into the genetic basis of carotenoid and pteridine-based color variation, shedding light on the evolution of sexually dimorphic coloration in animals. Moreover, it advances our understanding of the driving forces behind such intricate coloration patterns.


Assuntos
Lagartos , Pigmentação da Pele , Animais , Feminino , Masculino , Lagartos/genética , Carotenoides/metabolismo , Pteridinas , Reprodução , Pigmentação/genética , Cor
8.
EMBO J ; 40(8): e106283, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33665835

RESUMO

Mitochondrial DNA (mtDNA) encodes several key components of respiratory chain complexes that produce cellular energy through oxidative phosphorylation. mtDNA is vulnerable to damage under various physiological stresses, especially oxidative stress. mtDNA damage leads to mitochondrial dysfunction, and dysfunctional mitochondria can be removed by mitophagy, an essential process in cellular homeostasis. However, how damaged mtDNA is selectively cleared from the cell, and how damaged mtDNA triggers mitophagy, remain mostly unknown. Here, we identified a novel mitophagy receptor, ATAD3B, which is specifically expressed in primates. ATAD3B contains a LIR motif that binds to LC3 and promotes oxidative stress-induced mitophagy in a PINK1-independent manner, thus promoting the clearance of damaged mtDNA induced by oxidative stress. Under normal conditions, ATAD3B hetero-oligomerizes with ATAD3A, thus promoting the targeting of the C-terminal region of ATAD3B to the mitochondrial intermembrane space. Oxidative stress-induced mtDNA damage or mtDNA depletion reduces ATAD3B-ATAD3A hetero-oligomerization and leads to exposure of the ATAD3B C-terminus at the mitochondrial outer membrane and subsequent recruitment of LC3 for initiating mitophagy. Furthermore, ATAD3B is little expressed in m.3243A > G mutated cells and MELAS patient fibroblasts showing endogenous oxidative stress, and ATAD3B re-expression promotes the clearance of m.3243A > G mutated mtDNA. Our findings uncover a new pathway to selectively remove damaged mtDNA and reveal that increasing ATAD3B activity is a potential therapeutic approach for mitochondrial diseases.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia , Estresse Oxidativo , ATPases Associadas a Diversas Atividades Celulares/química , ATPases Associadas a Diversas Atividades Celulares/genética , Animais , Células Cultivadas , Dano ao DNA , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Ligação Proteica
9.
Development ; 149(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35237793

RESUMO

The mitochondrial matrix AAA+ Lon protease (LONP1) degrades misfolded or unassembled proteins, which play a pivotal role in mitochondrial quality control. During heart development, a metabolic shift from anaerobic glycolysis to mitochondrial oxidative phosphorylation takes place, which relies strongly on functional mitochondria. However, the relationship between the mitochondrial quality control machinery and metabolic shifts is elusive. Here, we interfered with mitochondrial quality control by inactivating Lonp1 in murine embryonic cardiac tissue, resulting in severely impaired heart development, leading to embryonic lethality. Mitochondrial swelling, cristae loss and abnormal protein aggregates were evident in the mitochondria of Lonp1-deficient cardiomyocytes. Accordingly, the p-eIF2α-ATF4 pathway was triggered, and nuclear translocation of ATF4 was observed. We further demonstrated that ATF4 regulates the expression of Tfam negatively while promoting that of Glut1, which was responsible for the disruption of the metabolic shift to oxidative phosphorylation. In addition, elevated levels of reactive oxygen species were observed in Lonp1-deficient cardiomyocytes. This study revealed that LONP1 safeguards metabolic shifts in the developing heart by controlling mitochondrial protein quality, suggesting that disrupted mitochondrial quality control may cause prenatal cardiomyopathy.


Assuntos
Coração , Mitocôndrias Cardíacas , Protease La , Proteases Dependentes de ATP/metabolismo , Animais , Coração/crescimento & desenvolvimento , Camundongos , Mitocôndrias Cardíacas/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fosforilação Oxidativa , Protease La/genética , Protease La/metabolismo
10.
J Am Chem Soc ; 146(7): 4727-4740, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38330247

RESUMO

Cooperative bimetallic catalysis to access novel reactivities is a powerful strategy for reaction development in transition-metal-catalyzed chemistry. Particularly, elucidation of the evolution of two transition-metal catalysts and understanding their roles in dual catalysis are among the most fundamental goals for bimetallic catalysis. Herein, a novel three-component reaction of a terminal alkyne, a diazo ester, and an allylic carbonate was successfully developed via cooperative Cu/Rh catalysis with Xantphos as the ligand, providing a highly efficient strategy to access 1,5-enynes with an all-carbon quaternary center that can be used as immediate synthetic precursors for complex cyclic molecules. Notably, a Meyer-Schuster rearrangement was involved in the reactions using propargylic alcohols, resulting in an unprecedented acylation-allylation of carbenes. Mechanistic studies suggested that in the course of the reaction Cu(I) species might aggregate to some types of Cu clusters and nanoparticles (NPs), while the Rh(II)2 precursor can dissociate to mono-Rh species, wherein Cu NPs are proposed to be responsible for the alkynylation of carbenes and work in cooperation with Xantphos-coordinated dirhodium(II) or Rh(I)-catalyzed allylic alkylation.

11.
J Am Chem Soc ; 146(28): 19599-19608, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38952064

RESUMO

Crystalline polyethylenes bearing carboxylic acid groups in the main chain were successfully degraded with a Ce catalyst and visible light. The reaction proceeds in a crystalline solid state without swelling in acetonitrile or water at a reaction temperature as low as 60 or 80 °C, employing dioxygen in air as the only stoichiometric reactant with nearly quantitative recovery of carbon atoms. Heterogeneous features of the reaction allowed us to reveal a dynamic morphological change of polymer crystals during the degradation.

12.
J Am Chem Soc ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324666

RESUMO

Functional molecules derived from stereogenic phosphorus centers have important applications in the discovery of drugs and agrochemicals. They are also widely utilized as chiral ligands or organocatalysts for diverse asymmetric transformations. However, access to P-stereogenic motifs has always been regarded as a highly challenging yet desirable goal in organic synthesis. The development of general and practical methods for the stereoselective construction of synthetically versatile P(III)-stereogenic phosphines is particularly appealing but remains elusive. Herein, we describe a nickel-catalyzed asymmetric alkylation of primary phosphines with alkyl halides for the synthesis of P-stereogenic secondary phosphine-boranes with high enantioselectivity and broad substrate scope. The resulting optically active secondary phosphine-boranes allow for further stereospecific transformations, thereby establishing a modular and efficient platform for the diversity-oriented construction of P-stereogenic phosphine compounds.

13.
Opt Express ; 32(8): 14018-14032, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38859359

RESUMO

Developing advanced luminescent materials that are recognizable under specified conditions provides better opportunity for reliable optical anti-counterfeiting techniques. In this work, to the best of our knowledge, novel GdInO3:Tm,Yb perovskite phosphors with ultrafine sizes and rounded morphologies were successfully synthesized by a facile chemical precipitation route. Two-type perovskites with orthorhombic and hexagonal structures could be obtained by calcining the precursor at 850 and 1100 °C, respectively. Under 980 nm excitation, the two phosphors exhibited cyan-bluish emission at ∼460-565 nm, red emission at 645-680 nm, and near-infrared emission at 770-825 nm arising from 1G4 + 1D2→3H5,6, 3F2,3→3H6, and 3H4→3H6 transitions of Tm3+, respectively, where the hexagonal perovskite phosphor had relatively strong and sharp red emission as well as red-shifted cyan-bluish emission via successive cross relaxations. The Yb3+ sensitizer enhanced the upconversion luminescence via effective Yb3+→Tm3+ energy transfer and the optimal Yb3+ concentrations were 10 at.% for orthorhombic perovskite and 5 at.% for hexagonal one. The upconversion mechanism mainly ascribed to two-photon processes while three-photon was also present. Upon excitation at 254 nm, their down-conversion spectra exhibited broad multibands in the wavelength range of 400-500 nm deriving from combined effects of the defect-induced emission of GdInO3 and the 1D2→3F4 + 4G4→3H6 emissions of Tm3+. The energy transfer from GdInO3 defect level to Tm3+ excitation state was observed for the first time. The unclonable security codes prepared by screen printing from those dual-mode emitting perovskite phosphors were almost invisible under natural light, which had promising potential for anti-counterfeiting application.

14.
Microb Pathog ; 195: 106880, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39181191

RESUMO

Toxoplasma gondii (T.gondii) can influence the host's neurotransmission, central immune responses, and brain structure, potentially impacting the onset and development of various psychiatric disorders such as schizophrenia. We employed Electrochemiluminescence Immunoassay (ECLIA) to measure anti-Toxoplasma antibodies in 451 schizophrenic patients and 478 individuals from the general population in Hunan, China. The incidence rate of T.gondii infection in schizophrenic patients (8.87 %) was higher than that in the general population (3.77 %). A significant difference was observed among females, but not in males. Age-stratified analysis revealed significant differences in the 21-40 and 41-60 age groups. The two populations had no significant difference in the antibody titer for T. gondii infection. Additionally, the profile of circulating metabolites in the serum of schizophrenic patients with or without T. gondii infection was examined using non-targeted metabolomics assay. A total of 68 metabolites were differentially expressed between Toxoplasma-positive and Toxoplasma-negative groups, potentially mediating the connection between T. gondii infection and schizophrenia. Our research suggests that schizophrenic patients are susceptible to T. gondii infection with distinct metabolic program.


Assuntos
Anticorpos Antiprotozoários , Metabolômica , Esquizofrenia , Toxoplasma , Toxoplasmose , Humanos , Esquizofrenia/sangue , Esquizofrenia/epidemiologia , China/epidemiologia , Toxoplasmose/epidemiologia , Toxoplasmose/sangue , Feminino , Masculino , Adulto , Toxoplasma/imunologia , Pessoa de Meia-Idade , Anticorpos Antiprotozoários/sangue , Adulto Jovem , Estudos Soroepidemiológicos , Incidência
15.
Psychol Med ; : 1-10, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38720516

RESUMO

BACKGROUND: Major depressive disorder (MDD) is one of the most prevalent and disabling illnesses worldwide. Treatment of MDD typically relies on trial-and-error to find an effective approach. Identifying early response-related biomarkers that predict response to antidepressants would help clinicians to decide, as early as possible, whether a particular treatment might be suitable for a given patient. METHODS: Data were from the two-stage Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care (EMBARC) trial. A whole-brain, voxel-wise, mixed-effects model was applied to identify early-treatment cerebral blood flow (CBF) changes as biomarkers of treatment response. We examined changes in CBF measured with arterial spin labeling 1-week after initiating double-masked sertraline/placebo. We tested whether these early 1-week scans could be used to predict response observed after 8-weeks of treatment. RESULTS: Response to 8-week placebo treatment was associated with increased cerebral perfusion in temporal cortex and reduced cerebral perfusion in postcentral region captured at 1-week of treatment. Additionally, CBF response in these brain regions was significantly correlated with improvement in Hamilton Depression Rating Scale score in the placebo group. No significant associations were found for selective serotonin reuptake inhibitor treatment. CONCLUSIONS: We conclude that early CBF responses to placebo administration in multiple brain regions represent candidate neural biomarkers of longer-term antidepressant effects.

16.
Langmuir ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39263694

RESUMO

Mocha diffusion, a significant interfacial phenomenon in pottery painting, remains insufficiently understood in the documented literature regarding its dynamics. This study experimentally investigates Mocha patterns by quantitatively dripping ethanol droplets onto an acrylic paint surface. Results indicate that the spreading radius increases with the ethanol mass fraction, while the fractal period decreases. The fractal dimension of all Mocha patterns approximates 1.4087. Marangoni flow, generated by the volatilization of ethanol, is crucial for the growth and fractal formation of the "dendrites" in this spreading. The scaling analysis is used to interpret the spreading dynamics. This work encourages the interface science community to develop a comprehensive theory for the dynamics of Mocha diffusion and highlights the potential of this intriguing decorative technique.

17.
Eur Radiol ; 34(8): 4950-4959, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38224375

RESUMO

OBJECTIVES: As a novel imaging marker, pericoronary fat attenuation index (FAI) reflects the local coronary inflammation which is one of the major mechanisms for in-stent restenosis (ISR). We aimed to validate the ability of pericoronary FAI to predict ISR in patients undergoing percutaneous coronary intervention (PCI). MATERIALS AND METHODS: Patients who underwent coronary CT angiography (CCTA) before PCI within 1 week between January 2017 and December 2019 at our hospital and had follow-up invasive coronary angiography (ICA) or CCTA were enrolled. Pericoronary FAI was measured at the site where stents would be placed. ISR was defined as ≥ 50% diameter stenosis at follow-up ICA or CCTA in the in-stent area. Multivariable analysis using mixed effects logistic regression models was performed to test the association between pericoronary FAI and ISR at lesion level. RESULTS: A total of 126 patients with 180 target lesions were included in the study. During 22.5 months of mean interval time from index PCI to follow-up ICA or CCTA, ISR occurred in 40 (22.2%, 40/180) stents. Pericoronary FAI was associated with a higher risk of ISR (adjusted OR = 1.12, p = 0.028). The optimum cutoff was - 69.6 HU. Integrating the dichotomous pericoronary FAI into current state of the art prediction model for ISR improved the prediction ability of the model significantly (△area under the curve = + 0.064; p = 0.001). CONCLUSION: Pericoronary FAI around lesions with subsequent stent placement is independently associated with ISR and could improve the ability of current prediction model for ISR. CLINICAL RELEVANCE STATEMENT: Pericoronary fat attenuation index can be used to identify the lesions with high risk for in-stent restenosis. These lesions may benefit from extra anti-inflammation treatment to avoid in-stent restenosis. KEY POINTS: • Pericoronary fat attenuation index reflects the local coronary inflammation. • Pericoronary fat attenuation index around lesions with subsequent stents placement can predict in-stent restenosis. • Pericoronary fat attenuation index can be used as a marker for future in-stent restenosis.


Assuntos
Angiografia por Tomografia Computadorizada , Angiografia Coronária , Reestenose Coronária , Intervenção Coronária Percutânea , Valor Preditivo dos Testes , Stents , Humanos , Masculino , Feminino , Reestenose Coronária/diagnóstico por imagem , Reestenose Coronária/etiologia , Pessoa de Meia-Idade , Intervenção Coronária Percutânea/métodos , Stents/efeitos adversos , Angiografia por Tomografia Computadorizada/métodos , Idoso , Tecido Adiposo/diagnóstico por imagem , Estudos Retrospectivos , Tecido Adiposo Epicárdico
18.
Inorg Chem ; 63(15): 6787-6797, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38556762

RESUMO

The electrocatalytic reduction of NO2- (NO2RR) holds promise as a sustainable pathway to both promoting the development of emerging NH3 economies and allowing the closing of the NOx loop. Highly efficient electrocatalysts that could facilitate this complex six-electron transfer process are urgently desired. Herein, tremella-like CoNi-LDH intercalated by cyclic polyoxometalate (POM) anion P8W48 (P8W48/CoNi-LDH) prepared by a simple two-step hydrothermal-exfoliation assembly method is proposed as an effective electrocatalyst for NO2- to NH3 conversion. The introduction of POM with excellent redox ability tremendously increased the electrocatalytic performance of CoNi-LDH in the NO2RR process, causing P8W48/CoNi-LDH to exhibit large NH3 yield of 0.369 mmol h-1 mgcat-1 and exceptionally high Faradic efficiency of 97.0% at -1.3 V vs the Ag/AgCl reference electrode in 0.1 M phosphate buffer saline (PBS, pH = 7) containing 0.1 M NO2-. Furthermore, P8W48/CoNi-LDH demonstrated excellent durability during cyclic electrolysis. This work provides a new reference for the application of POM-based nanocomposites in the electrochemical reduction of NO2- to obtain value-added NH3.

19.
Cell Mol Biol (Noisy-le-grand) ; 70(8): 129-136, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39262253

RESUMO

Spontaneous abortion (SA) is a prevalent placental dysfunction, and ferroptosis may play a crucial role in placental dysfunction and the development of SA. In this study, we employed data mining and analysis techniques to investigate the biological mechanism of SA induced by ferroptosis, resulting in the identification of a total of 79 ferroptosis-related genes in SA were identified. Among them, 3 co-expression modules of ferroptosis risk genes, ten significant functions and six biologically significant pathways were obtained 61 pairs of differentially expressed miRNA-ferroptosis factor relationships were identified, and WIPI1 and GSN were expressed at significantly higher levels in SA. This is extremely helpful for future research on SA.


Assuntos
Aborto Espontâneo , Biologia Computacional , Ferroptose , MicroRNAs , Ferroptose/genética , Humanos , Biologia Computacional/métodos , Feminino , Aborto Espontâneo/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Gravidez , Redes Reguladoras de Genes , Regulação da Expressão Gênica , Perfilação da Expressão Gênica
20.
Acta Pharmacol Sin ; 45(6): 1214-1223, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38467718

RESUMO

CD80 is a transmembrane glycoprotein belonging to the B7 family, which has emerged as a crucial molecule in T cell modulation via the CD28 or CTLA4 axes. CD80-involved regulation of immune balance is a finely tuned process and it is important to elucidate the underlying mechanism for regulating CD80 function. In this study we investigated the post-translational modification of CD80 and its biological relevance. By using a metabolic labeling strategy, we found that CD80 was S-palmitoylated on multiple cysteine residues (Cys261/262/266/271) in both the transmembrane and the cytoplasmic regions. We further identified zDHHC20 as a bona fide palmitoyl-transferase determining the S-palmitoylation level of CD80. We demonstrated that S-palmitoylation protected CD80 protein from ubiquitination degradation, regulating the protein stability, and ensured its accurate plasma membrane localization. The palmitoylation-deficient mutant (4CS) CD80 disrupted these functions, ultimately resulting in the loss of its costimulatory function upon T cell activation. Taken together, our results describe a new post-translational modification of CD80 by S-palmitoylation as a novel mechanism for the regulation of CD80 upon T cell activation.


Assuntos
Aciltransferases , Antígeno B7-1 , Lipoilação , Ativação Linfocitária , Humanos , Antígeno B7-1/metabolismo , Aciltransferases/metabolismo , Células HEK293 , Linfócitos T/metabolismo , Linfócitos T/imunologia , Processamento de Proteína Pós-Traducional , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA