Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38220572

RESUMO

Autism spectrum disorder is a complex neurodevelopmental condition with diverse genetic and brain involvement. Despite magnetic resonance imaging advances, autism spectrum disorder diagnosis and understanding its neurogenetic factors remain challenging. We propose a dual-branch graph neural network that effectively extracts and fuses features from bimodalities, achieving 73.9% diagnostic accuracy. To explain the mechanism distinguishing autism spectrum disorder from healthy controls, we establish a perturbation model for brain imaging markers and perform a neuro-transcriptomic joint analysis using partial least squares regression and enrichment to identify potential genetic biomarkers. The perturbation model identifies brain imaging markers related to structural magnetic resonance imaging in the frontal, temporal, parietal, and occipital lobes, while functional magnetic resonance imaging markers primarily reside in the frontal, temporal, occipital lobes, and cerebellum. The neuro-transcriptomic joint analysis highlights genes associated with biological processes, such as "presynapse," "behavior," and "modulation of chemical synaptic transmission" in autism spectrum disorder's brain development. Different magnetic resonance imaging modalities offer complementary information for autism spectrum disorder diagnosis. Our dual-branch graph neural network achieves high accuracy and identifies abnormal brain regions and the neuro-transcriptomic analysis uncovers important genetic biomarkers. Overall, our study presents an effective approach for assisting in autism spectrum disorder diagnosis and identifying genetic biomarkers, showing potential for enhancing the diagnosis and treatment of this condition.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Aprendizado Profundo , Humanos , Transtorno Autístico/patologia , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Encéfalo , Imageamento por Ressonância Magnética/métodos , Biomarcadores , Mapeamento Encefálico/métodos
2.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38300216

RESUMO

The dorsolateral prefrontal cortex (DLPFC) assumes a central role in cognitive and behavioral control, emerging as a crucial target region for interventions in autism spectrum disorder neuroregulation. Consequently, we endeavor to unravel the functional subregions within the DLPFC to shed light on the intricate functions of the brain. We introduce a distance-constrained spectral clustering (SC-DW) methodology that leverages functional connection to identify distinctive functional subregions within the DLPFC. Furthermore, we verify the relationship between the functional characteristics of these subregions and their clinical implications. Our methodology begins with principal component analysis to extract the salient features. Subsequently, we construct an adjacency matrix, which is constrained by the spatial properties of the brain, by linearly combining the distance matrix and a similarity matrix. The quality of spectral clustering is further optimized through multiple cluster evaluation coefficient. The results from SC-DW revealed four uniform and contiguous subregions within the bilateral DLPFC. Notably, we observe a substantial positive correlation between the functional characteristics of the third and fourth subregions in the left DLPFC with clinical manifestations. These findings underscore the unique insights offered by our proposed methodology in the realms of brain subregion delineation and therapeutic targeting.


Assuntos
Transtorno do Espectro Autista , Córtex Pré-Frontal Dorsolateral , Humanos , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos , Transtorno do Espectro Autista/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Análise por Conglomerados
3.
Cereb Cortex ; 33(10): 6407-6419, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36587290

RESUMO

Autism spectrum disorder (ASD) is a complex brain neurodevelopmental disorder related to brain activity and genetics. Most of the ASD diagnostic models perform feature selection at the group level without considering individualized information. Evidence has shown the unique topology of the individual brain has a fundamental impact on brain diseases. Thus, a data-constructing method fusing individual topological information and a corresponding classification model is crucial in ASD diagnosis and biomarker discovery. In this work, we trained an attention-based graph neural network (GNN) to perform the ASD diagnosis with the fusion of graph data. The results achieved an accuracy of 79.78%. Moreover, we found the model paid high attention to brain regions mainly involved in the social-brain circuit, default-mode network, and sensory perception network. Furthermore, by analyzing the covariation between functional magnetic resonance imaging data and gene expression, current studies detected several ASD-related genes (i.e. MUTYH, AADAT, and MAP2), and further revealed their links to image biomarkers. Our work demonstrated that the ASD diagnostic framework based on graph data and attention-based GNN could be an effective tool for ASD diagnosis. The identified functional features with high attention values may serve as imaging biomarkers for ASD.


Assuntos
Transtorno do Espectro Autista , Humanos , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/genética , Mapeamento Encefálico/métodos , Encéfalo , Imageamento por Ressonância Magnética/métodos , Biomarcadores , Redes Neurais de Computação , Expressão Gênica , Vias Neurais/diagnóstico por imagem
4.
Cereb Cortex ; 33(10): 6132-6138, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36562996

RESUMO

BrainAGE is a commonly used machine learning technique to measure the accelerated/delayed development pattern of human brain structure/function with neuropsychiatric disorders. However, recent studies have shown a systematic bias ("regression toward mean" effect) in the BrainAGE method, which indicates that the prediction error is not uniformly distributed across Chronological Ages: for the older individuals, the Brain Ages would be under-estimated but would be over-estimated for the younger individuals. In the present study, we propose an individual-level weighted artificial neural network method and apply it to simulation datasets (containing 5000 simulated subjects) and a real dataset (containing 135 subjects). Results show that compared with traditional machine learning methods, the individual-level weighted strategy can significantly reduce the "regression toward mean" effect, while the prediction performance can achieve the comparable level with traditional machine learning methods. Further analysis indicates that the sigmoid active function for artificial neural network shows better performance than the relu active function. The present study provides a novel strategy to reduce the "regression toward mean" effect of BrainAGE analysis, which is helpful to improve accuracy in exploring the atypical brain structure/function development pattern of neuropsychiatric disorders.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Aprendizado de Máquina , Redes Neurais de Computação , Viés
5.
Cereb Cortex ; 33(6): 2415-2425, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35641181

RESUMO

Major depressive disorder (MDD) is the second leading cause of disability worldwide. Currently, the structural magnetic resonance imaging-based MDD diagnosis models mainly utilize local grayscale information or morphological characteristics in a single site with small samples. Emerging evidence has demonstrated that different brain structures in different circuits have distinct developmental timing, but mature coordinately within the same functional circuit. Thus, establishing an attention-guided unified classification framework with deep learning and individual structural covariance networks in a large multisite dataset could facilitate developing an accurate diagnosis strategy. Our results showed that attention-guided classification could improve the classification accuracy from primary 75.1% to ultimate 76.54%. Furthermore, the discriminative features of regional covariance connectivities and local structural characteristics were found to be mainly located in prefrontal cortex, insula, superior temporal cortex, and cingulate cortex, which have been widely reported to be closely associated with depression. Our study demonstrated that our attention-guided unified deep learning framework may be an effective tool for MDD diagnosis. The identified covariance connectivities and structural features may serve as biomarkers for MDD.


Assuntos
Transtorno Depressivo Maior , Humanos , Encéfalo , Imageamento por Ressonância Magnética , Atenção , Redes Neurais de Computação
6.
Cereb Cortex ; 33(11): 7250-7257, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36775985

RESUMO

Depression after brain damage may impede the motivation and consequently influence the motor recovery after spinal cord injury (SCI); however, the neural mechanism underlying the psychological effects remains unclear. This study aimed to examine the casual connectivity changes of the emotion-motivation-motor circuit and the potential mediating effects of depression on motor recovery after SCI. Using the resting-state functional magnetic resonance imaging data of 35 SCI patients (24 good recoverers, GR and 11 poor recoverers, PR) and 32 healthy controls (HC), the results from the conditional Granger causality (GC) analysis demonstrated that the GR group exhibited sparser emotion-motivation-motor GC network compared with the HC and PR groups, though the in-/out-degrees of the emotion subnetwork and the motor subnetwork were relatively balanced in the HC and GR group. The PR group showed significantly inhibitory causal links from amygdala to supplementary motor area and from precentral gyrus to nucleus accumbens compared with GR group. Further mediation analysis revealed the indirect effect of the 2 causal connections on motor function recovery via depression severity. Our findings provide further evidence of abnormal causal connectivity in emotion-motivation-motor circuit in SCI patients and highlight the importance of emotion intervention for motor function recovery after SCI.


Assuntos
Córtex Motor , Traumatismos da Medula Espinal , Humanos , Depressão/diagnóstico por imagem , Depressão/etiologia , Imageamento por Ressonância Magnética , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/diagnóstico por imagem , Emoções , Córtex Motor/diagnóstico por imagem , Medula Espinal , Recuperação de Função Fisiológica
7.
Cereb Cortex ; 33(11): 6681-6692, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36642500

RESUMO

Evidence has indicated abnormalities of thalamo-cortical functional connectivity (FC) in bipolar disorder during a depressive episode (BDD) and major depressive disorder (MDD). However, the dynamic FC (dFC) within this system is poorly understood. We explored the thalamo-cortical dFC pattern by dividing thalamus into 16 subregions and combining with a sliding-window approach. Correlation analysis was performed between altered dFC variability and clinical data. Classification analysis with a linear support vector machine model was conducted. Compared with healthy controls (HCs), both patients revealed increased dFC variability between thalamus subregions with hippocampus (HIP), angular gyrus and caudate, and only BDD showed increased dFC variability of the thalamus with superior frontal gyrus (SFG), HIP, insula, middle cingulate gyrus, and postcentral gyrus. Compared with MDD and HCs, only BDD exhibited enhanced dFC variability of the thalamus with SFG and superior temporal gyrus. Furthermore, the number of depressive episodes in MDD was significantly positively associated with altered dFC variability. Finally, the disrupted dFC variability could distinguish BDD from MDD with 83.44% classification accuracy. BDD and MDD shared common disrupted dFC variability in the thalamo-limbic and striatal-thalamic circuitries, whereas BDD exhibited more extensive and broader aberrant dFC variability, which may facilitate distinguish between these 2 mood disorders.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Bipolar/diagnóstico por imagem , Imageamento por Ressonância Magnética , Córtex Pré-Frontal , Lobo Temporal , Encéfalo
8.
Cereb Cortex ; 33(3): 831-843, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35357431

RESUMO

BACKGROUND: Morphometric studies demonstrated wide-ranging distribution of brain structural abnormalities in major depressive disorder (MDD). OBJECTIVE: This study explored the progressive gray matter volume (GMV) changes pattern of structural network in 108 MDD patients throughout the illness duration by using voxel-based morphometric analysis. METHODS: The causal structural covariance network method was applied to map the causal effects of GMV alterations between the original source of structural changes and other brain regions as the illness duration prolonged in MDD. This was carried out by utilizing the Granger causality analysis to T1-weighted data ranked based on the disease progression information. RESULTS: With greater illness duration, the GMV reduction was originated from the right insula and progressed to the frontal lobe, and then expanded to the occipital lobe, temporal lobe, dorsal striatum (putamen and caudate) and the cerebellum. Importantly, results revealed that the right insula was the prominent node projecting positive causal influences (i.e., GMV decrease) to frontal lobe, temporal lobe, postcentral gyrus, putamen, and precuneus. While opposite causal effects were detected from the right insula to the angular, parahippocampus, supramarginal gyrus and cerebellum. CONCLUSIONS: This work may provide further information and vital evidence showing that MDD is associated with progressive brain structural alterations.


Assuntos
Encefalopatias , Transtorno Depressivo Maior , Humanos , Substância Cinzenta/diagnóstico por imagem , Transtorno Depressivo Maior/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Lobo Frontal , Imageamento por Ressonância Magnética/métodos
9.
Hum Brain Mapp ; 44(1): 258-268, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35822559

RESUMO

Studies have reported that different brain regions/connections possess distinct frequency properties, which are related to brain function. Previous studies have proposed altered brain activity frequency and frequency-specific functional connectivity (FC) patterns in autism spectrum disorder (ASD), implying the varied dominant frequency of FC in ASD. However, the difference of the dominant frequency of FC between ASD and healthy controls (HCs) remains unclear. In the present study, the dominant frequency of FC was measured by FC optimal frequency, which was defined as the intermediate of the frequency bin at which the FC strength could reach the maximum. A multivariate pattern analysis was conducted to determine whether the FC optimal frequency in ASD differs from that in HCs. Partial least squares regression (PLSR) and enrichment analyses were conducted to determine the relationship between the FC optimal frequency difference of ASD/HCs and cortical gene expression. PLSR analyses were also performed to explore the relationship between FC optimal frequency and the clinical symptoms of ASD. Results showed a significant difference of FC optimal frequency between ASD and HCs. Some genes whose cortical expression patterns are related to the FC optimal frequency difference of ASD/HCs were enriched for social communication problems. Meanwhile, the FC optimal frequency in ASD was significantly related to social communication symptoms. These results may help us understand the neuro-mechanism of the social communication deficits in ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/genética , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Vias Neurais/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Comunicação , Expressão Gênica
10.
Cereb Cortex ; 32(6): 1307-1317, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34416760

RESUMO

Literatures have reported considerable heterogeneity with atypical functional connectivity (FC) pattern of psychiatric disorders. However, traditional statistical methods are hard to explore this heterogeneity pattern. We proposed a "brain dimension" method to describe the atypical FC patterns of major depressive disorder and bipolar disorder (BD). The approach was firstly applied to a simulation dataset. It was then utilized to a real resting-state functional magnetic resonance imaging dataset of 47 individuals with major depressive disorder, 32 individuals with BD, and 52 well matched health controls. Our method showed a better ability to extract the FC dimensions than traditional methods. The results of the real dataset revealed atypical FC dimensions for major depressive disorder and BD. Especially, an atypical FC dimension which exhibited decreased FC strength of thalamus and basal ganglia was found with higher severity level of individuals with BD than the ones with major depressive disorder. This study provided a novel "brain dimension" method to view the atypical FC patterns of major depressive disorder and BD and revealed shared and specific atypical FC patterns between major depressive disorder and BD.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Transtorno Bipolar/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Depressão , Transtorno Depressivo Maior/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos
11.
Cereb Cortex ; 32(23): 5301-5310, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-35152289

RESUMO

Major depressive disorder (MDD) is a chronic and highly recurrent disorder. The functional connectivity in depression is affected by the cumulative effect of course of illness. However, previous neuroimaging studies on abnormal functional connection have not mainly focused on the disease duration, which is seen as a secondary factor. Here, we used a data-driven analysis (multivariate distance matrix regression) to examine the relationship between the course of illness and resting-state functional dysconnectivity in MDD. This method identified a region in the anterior cingulate cortex, which is most linked to course of illness. Specifically, follow-up seed analyses show this phenomenon resulted from the individual differences in the topological distribution of three networks. In individuals with short-duration MDD, the connection to the default mode network was strong. By contrast, individuals with long-duration MDD showed hyperconnectivity to the ventral attention network and the frontoparietal network. These results emphasized the centrality of the anterior cingulate cortex in the pathophysiology of the increased course of illness and implied critical links between network topography and pathological duration. Thus, dissociable patterns of connectivity of the anterior cingulate cortex is an important dimension feature of the disease process of depression.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Giro do Cíngulo/diagnóstico por imagem , Mapeamento Encefálico
12.
Hum Brain Mapp ; 43(4): 1449-1462, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34888973

RESUMO

Aberrant affective neural processing and negative emotional bias are trait-marks of major depression disorders (MDDs). However, most research on biased emotional perception in depression has only focused on unimodal experimental stimuli, the neural basis of potentially biased emotional processing of multimodal inputs remains unclear. Here, we addressed this issue by implementing an audiovisual emotional task during functional MRI scanning sessions with 37 patients with MDD and 37 gender-, age- and education-matched healthy controls. Participants were asked to distinguish laughing and crying sounds while being exposed to faces with different emotional valences as background. We combined general linear model and psychophysiological interaction analyses to identify abnormal local functional activity and integrative processes during audiovisual emotional processing in MDD patients. At the local neural level, MDD patients showed increased bias activity in the ventromedial prefrontal cortex (vmPFC) while listening to negative auditory stimuli and concurrently processing visual facial expressions, along with decreased dorsolateral prefrontal cortex (dlPFC) activity in both the positive and negative visual facial conditions. At the network level, MDD exhibited significantly decreased connectivity in areas involved in automatic emotional processes and voluntary control systems during perception of negative stimuli, including the vmPFC, dlPFC, insula, as well as the subcortical regions of posterior cingulate cortex and striatum. These findings support a multimodal emotion dysregulation hypothesis for MDD by demonstrating that negative bias effects may be facilitated by the excessive ventral bottom-up negative emotional influences along with incapability in dorsal prefrontal top-down control system.


Assuntos
Percepção Auditiva/fisiologia , Mapeamento Encefálico , Cérebro/fisiologia , Transtorno Depressivo Maior/fisiopatologia , Emoções/fisiologia , Reconhecimento Facial/fisiologia , Percepção Social , Adulto , Cérebro/diagnóstico por imagem , Transtorno Depressivo Maior/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
13.
Hum Brain Mapp ; 43(7): 2276-2288, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35089635

RESUMO

Childhood maltreatment (CM) confers a great risk of maladaptive development outcomes later in life, however, the neurobiological mechanism underlying this vulnerability is still unclear. The present study aimed to investigate the long-term consequences of CM on neural connectivity while controlling for psychiatric conditions, medication, and, substance abuse. A sample including adults with (n = 40) and without CM (n = 50) completed Childhood Trauma Questionnaire (CTQ), personality questionnaires, and resting-state functional magnetic resonance imaging scan were recruited for the current study. The whole-brain functional connectivity (FC) was evaluated using an unbiased, data-driven, multivariate pattern analysis method. Relative to controls, adults with CM suffered a higher level of temperament and impulsivity and showed decreased FC between the insula and superior temporal gyrus (STG) and between inferior parietal lobule (IPL) and middle frontal gyrus, STG, and dorsal anterior cingulate cortex (dACC), while increased FC between IPL and cuneus and superior frontal gyrus (SFG) regions. The FCs of IPL with dACC and SFG were correlated with the anxious and cyclothymic temperament and attentional impulsivity. Moreover, these FCs partially mediated the relationship between CM and attentional impulsivity. Our results suggest that CM has a significant effect on the modulation of FC within theory of mind (ToM) network even decades later in adulthood, and inform a new framework to account for how CM results in the development of impulsivity. The novel findings reveal the neurobiological consequences of CM and provide new clues to the prevention and intervention strategy to reduce the risk of the development of psychopathology.


Assuntos
Maus-Tratos Infantis , Teoria da Mente , Adulto , Encéfalo/diagnóstico por imagem , Criança , Humanos , Sistema Límbico , Imageamento por Ressonância Magnética/métodos
14.
Cereb Cortex ; 32(1): 1-14, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34642754

RESUMO

Emotion dysregulation is one of the core features of major depressive disorder (MDD). However, most studies in depression have focused on unimodal emotion processing, whereas emotional perception in daily life is highly dependent on multimodal sensory inputs. Here, we proposed a novel multilevel discriminative framework to identify the altered neural patterns in processing audiovisual emotion in MDD. Seventy-four participants underwent an audiovisual emotional task functional magnetic resonance imaging scanning. Three levels of whole-brain functional features were extracted for each subject, including the task-evoked activation, task-modulated connectivity, combined activation and connectivity. Support vector machine classification and prediction models were built to identify MDD from controls and evaluate clinical relevance. We revealed that complex neural networks including the emotion regulation network (prefrontal areas and limbic-subcortical regions) and the multisensory integration network (lateral temporal cortex and motor areas) had the discriminative power. Moreover, by integrating comprehensive information of local and interactive processes, multilevel models could lead to a substantial increase in classification accuracy and depression severity prediction. Together, we highlight the high representational capacity of machine learning algorithms to characterize the complex network abnormalities associated with emotional regulation and multisensory integration in MDD. These findings provide novel evidence for the neural mechanisms underlying multimodal emotion dysregulation of depression.


Assuntos
Transtorno Depressivo Maior , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Depressão/diagnóstico por imagem , Emoções/fisiologia , Humanos , Imageamento por Ressonância Magnética
15.
Hum Brain Mapp ; 41(12): 3295-3304, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32400932

RESUMO

The clinical misdiagnosis ratio of bipolar disorder (BD) patients to major depressive disorder (MDD) patients is high. Recent findings hypothesize that the ability to flexibly recruit functional neural networks is differently altered in BD and MDD patients. This study aimed to explore distinct aberrance of network flexibility during dynamic networks configuration in BD and MDD patients. Resting state functional magnetic resonance imaging of 40 BD patients, 61 MDD patients, and 61 matched healthy controls were recruited. Dynamic functional connectivity matrices for each subject were constructed with a sliding window method. Then, network switching rate of each node was calculated and compared among the three groups. BD and MDD patients shared decreased network switching rate of regions including left precuneus, bilateral parahippocampal gyrus, and bilateral dorsal medial prefrontal cortex. Apart from these regions, MDD patients presented specially decreased network switching rate in the bilateral anterior insula, left amygdala, and left striatum. Taken together, BD and MDD patients shared decreased network switching rate of key hubs in default mode network and MDD patients presented specially decreased switching rate in salience network and striatum. We found shared and distinct aberrance of network flexibility which revealed altered adaptive functions during dynamic networks configuration of BD and MDD.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Transtorno Bipolar/fisiopatologia , Córtex Cerebral/fisiopatologia , Conectoma/métodos , Corpo Estriado/fisiopatologia , Rede de Modo Padrão/fisiopatologia , Transtorno Depressivo Maior/fisiopatologia , Rede Nervosa/fisiopatologia , Adulto , Tonsila do Cerebelo/diagnóstico por imagem , Transtorno Bipolar/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Conectoma/normas , Corpo Estriado/diagnóstico por imagem , Rede de Modo Padrão/diagnóstico por imagem , Transtorno Depressivo Maior/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
16.
Hum Brain Mapp ; 41(6): 1667-1676, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31849148

RESUMO

Previous neuroimaging studies have mainly focused on alterations of static and dynamic functional connectivity in patients with generalized anxiety disorder (GAD). However, the characteristics of local brain activity over time in GAD are poorly understood. This study aimed to investigate the abnormal time-varying local brain activity of GAD by using the amplitude of low-frequency fluctuation (ALFF) method combined with sliding-window approach. Group comparison results showed that compared with healthy controls (HCs), patients with GAD exhibited increased dynamic ALFF (dALFF) variability in widespread regions, including the bilateral dorsomedial prefrontal cortex, hippocampus, thalamus, striatum; and left orbital frontal gyrus, inferior parietal lobule, temporal pole, inferior temporal gyrus, and fusiform gyrus. The abnormal dALFF could be used to distinguish between patients with GAD and HCs. Increased dALFF variability values in the striatum were positively correlated with GAD symptom severity. These findings suggest that GAD patients are associated with abnormal temporal variability of local brain activity in regions implicated in executive, emotional, and social function. This study provides insight into the brain dysfunction of GAD from the perspective of dynamic local brain activity, highlighting the important role of dALFF variability in understanding neurophysiological mechanisms and potentially informing the diagnosis of GAD.


Assuntos
Transtornos de Ansiedade/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Adulto , Ansiolíticos/uso terapêutico , Transtornos de Ansiedade/tratamento farmacológico , Mapeamento Encefálico , Emoções , Função Executiva , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuroimagem , Escalas de Graduação Psiquiátrica , Comportamento Social , Adulto Jovem
17.
Aust N Z J Psychiatry ; 54(8): 832-842, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32456443

RESUMO

OBJECTIVE: Bipolar disorder in the depressive phase (BDd) may be misdiagnosed as major depressive disorder (MDD), resulting in poor treatment outcomes. To identify biomarkers distinguishing BDd from MDD is of substantial clinical significance. This study aimed to characterize specific alterations in intrinsic functional connectivity (FC) patterns in BDd and MDD by combining whole-brain static and dynamic FC. METHODS: A total of 40 MDD and 38 BDd patients, and 50 age-, sex-, education-, and handedness-matched healthy controls (HCs) were included in this study. Static and dynamic FC strengths (FCSs) were analyzed using complete time-series correlations and sliding window correlations, respectively. One-way analysis of variance was performed to test group effects. The combined static and dynamic FCSs were then used to distinguish BDd from MDD and to predict clinical symptom severity. RESULTS: Compared with HCs, BDd patients showed lower static FCS in the medial orbitofrontal cortex and greater static FCS in the caudate, while MDD patients exhibited greater static FCS in the medial orbitofrontal cortex. BDd patients also demonstrated greater static and dynamic FCSs in the thalamus compared with both MDD patients and HCs, while MDD patients exhibited greater dynamic FCS in the precentral gyrus compared with both BDd patients and HCs. Combined static and dynamic FCSs yielded higher accuracy than either static or dynamic FCS analysis alone, and also predicted anhedonia severity in BDd patients and negative mood severity in MDD patients. CONCLUSION: Altered FC within frontal-striatal-thalamic circuits of BDd patients and within the default mode network/sensorimotor network of MDD patients accurately distinguishes between these disorders. These unique FC patterns may serve as biomarkers for differential diagnosis and provide clues to the pathogenesis of mood disorders.


Assuntos
Transtorno Bipolar/diagnóstico , Transtorno Bipolar/fisiopatologia , Encéfalo/fisiopatologia , Transtorno Depressivo Maior/diagnóstico , Transtorno Depressivo Maior/fisiopatologia , Adulto , Transtorno Bipolar/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Transtorno Depressivo Maior/diagnóstico por imagem , Diagnóstico Diferencial , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino
18.
Clin Linguist Phon ; 34(9): 844-860, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31851530

RESUMO

Poor phonological development adversely affects language development and interpersonal communication abilities in children with Autism Spectrum Disorders (ASD). However, the characteristics of phonological development in children with ASD who speak Putonghua (the official standard spoken form of modern Mandarin Chinese) remain largely unknown. This study aims to investigate phonological acquisition and development among Putonghua-speaking children with ASD. Data were collected from participants recruited in Shanghai, China. Two experiments were conducted. In experiment I, phonological acquisition was compared between 16 children with ASD aged 3-6 years and 16 age-matched typically developing (TD) children. In experiment II, phonological acquisition was compared between 26 children with ASD over 6 years old and 26 receptive-language-age-matched TD children. Picture naming was applied to measure participants' phonology - the 21 initials, 36 finals and four tones of Putonghua. Paired-samples t-tests and Fisher's exact tests were applied. In experiment I, scores on initials, finals, tones and total phonology of children with ASD aged 3-6 years were significantly lower than those of age-matched TD children. The pronunciation accuracy rates for initials such as/x, th, l/, finals such as/jaʊ, joʊ, wo/ and Tone 3 (the low-rising tone) in the ASD group were significantly lower than in the TD group. In experiment II, there was no significant difference in overall phonological developmental level between children with ASD over 6 years old and receptive-language-age-matched TD children. Phonological development of Putonghua-speaking children with ASD was significantly lower than that of age-matched TD children but closer to that of receptive-language-age-matched TD children. Further, participants with ASD showed atypical development sequences in both initials and finals.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Desenvolvimento da Linguagem , Fonética , Adolescente , Criança , Pré-Escolar , China , Feminino , Humanos , Testes de Linguagem/estatística & dados numéricos , Masculino
19.
Aust N Z J Psychiatry ; 53(6): 528-539, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30813750

RESUMO

OBJECTIVE: Major depressive disorder (MDD) can be characterized as a multidimensional and system-level disorder. The neuropathophysiological abnormalities have been reported to be distributed in emotion regulation system, involving the prefrontal cortex (PFC), limbic and striatum in convergent studies. Decrease of positive affect and increase of negative affect are recognized as a hallmark of MDD. However, the dysfunctions in affective processing in MDD within the emotion regulation system remains largely unclear. In this study, our goals are to characterize the dysconnectivity pattern within this system and explore the relationships between this kind of dysconnectivity pattern and affective symptoms, which might help us better look into the neuropathophysiological mechanisms underlying MDD. METHODS: A total of 34 MDD and 34 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging (rsfMRI). The alterations in functional connectivity (FC) within the emotion regulation system and their relationships with affective symptoms were explored. RESULTS: Compared with HCs, MDD patients showed aberrant FC within this system. Importantly, deceased FC was mainly involved in the prefrontal-limbic system, while elevated FC was observed in the prefrontal-striatum system. In the MDD group, decreased FC of right posterior hippocampus-left dorsolateral prefrontal cortex (dlPFC) was negatively associated with the negative affect scores and Hamilton Depression Rating Scale scores and the FC of left ventral striatum-left dlPFC was significantly negatively related with the positive affect scores. CONCLUSIONS: These findings demonstrated that MDD showed characteristic pathological alterations of the emotion regulation system. Dysconnectivity within prefrontal-limbic system might be more related to the dysregulation of negative affect, whereas dysconnectivity within prefrontal-striatum system might influence more on positive affect processing. The decrease in positive affect and increase in negative affect in MDD might have different pathological basis. These results could help better understand the dysconnectivity pattern in the emotion-regulating system underlying depression.


Assuntos
Conectoma , Corpo Estriado/fisiopatologia , Transtorno Depressivo Maior/fisiopatologia , Regulação Emocional/fisiologia , Sistema Límbico/fisiopatologia , Rede Nervosa/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Adulto , Corpo Estriado/diagnóstico por imagem , Transtorno Depressivo Maior/diagnóstico por imagem , Feminino , Humanos , Sistema Límbico/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem
20.
J Affect Disord ; 347: 175-182, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38000466

RESUMO

BACKGROUND: Cortical thickness reductions in major depressive disorder are distributed across multiple regions. Research has indicated that cortical atrophy is influenced by connectome architecture on a range of neurological and psychiatric diseases. However, whether connectome architecture contributes to changes in cortical thickness in the same manner as it does in depression is unclear. This study aims to explain the distribution of cortical thickness reductions across the cortex in depression by brain connectome architecture. METHODS: Here, we calculated a differential map of cortical thickness between 110 depression patients and 88 age-, gender-, and education level-matched healthy controls by using T1-weighted images and a structural network reconstructed through the diffusion tensor imaging of control group. We then used a neighborhood deformation model to explore how cortical thickness change in an area is influenced by areas structurally connected to it. RESULTS: We found that cortical thickness in the frontoparietal and default networks decreased in depression, regional cortical thickness changes were related to reductions in their neighbors and were mainly limited by the frontoparietal and default networks, and the epicenter was in the prefrontal lobe. CONCLUSION: Current findings suggest that connectome architecture contributes to the irregular topographic distribution of cortical thickness reductions in depression and cortical atrophy is restricted by and dependent on structural foundation.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/patologia , Imagem de Tensor de Difusão , Encéfalo/patologia , Córtex Pré-Frontal/diagnóstico por imagem , Atrofia/patologia , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA