Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Idioma
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 28(4): 1265-1273, 2017 Apr 18.
Artigo em Zh | MEDLINE | ID: mdl-29741324

RESUMO

Intercropping of maize and potato, as an important intercropping planting pattern, has a prominent advantage of resource utilization and yield. However, contribution of nutrient uptake and utilization to crop yield advantage and its response to N application rates remain unclear. Through a 2-year plot experiment, including maize monoculture, potato monoculture and maize intercropping with potato at 4 N-fertilized levels of N0(0 kg·hm-2), N1(125 kg·hm-2), N2(250 kg·hm-2) and N3(375 kg·hm-2), nutritional contribution of yield advantage of intercropping was studied. The results showed that weighted average uptake of nitrogen, phosphorus and potassium was gradually increased with N application rate in monocultures, but increase followed by a decrease in intercropping. Compared with monoculture at the same N level, nutrient uptake advantage of intercropping was the highest at N1, which increased nitrogen, phosphorus and potassium uptake by 14.9%, 38.6% and 27.8%, respectively. However, the nutrient use efficiencies were highest in intercropping at N0 and N3 with increment of 3.5%-14.3% for nitrogen, 3.5%-18.5% for phosphorus and 10.6%-31.6% for potassium. Maize and potato intercropping had a significant yield advantage at N0 and N1. Yield advantage in intercropping attributed to improvement of nutrient use efficiency at N0 while to increase of nutrient uptake at N1. To utilize the yield advantage from nutrient uptake, controlling input of nitrogen fertilizer is necessary in intercropping.


Assuntos
Nitrogênio , Solanum tuberosum , Zea mays , Agricultura , Fertilizantes , Fósforo , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA