Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
J Am Chem Soc ; 146(26): 18061-18073, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38909313

RESUMO

The water hydrogen-bonded network is strongly perturbed in the first layers in contact with the semiconductor surface. Even though this aspect influences the outer-sphere electron transfer, it was not recognized that it is a crucial factor impacting the solar-driven water-splitting performances. To fill this gap, we have selected two TiO2 anatase samples (with and without B-doping), and by extensive experimental and computational investigations, we have demonstrated that the remarkable 5-fold increase in water-splitting photoactivity of the B-doped sample cannot be ascribed to effects typically associated to enhanced photocatalytic properties, such as band gap, heterojunctions, crystal facets, and other aspects. Studying these samples by combining FTIR measurements under controlled humidity with first-principles simulations sheds light on the role and nature of the first-layer water structure in contact with the photocatalyst surfaces. It turns out that the doping hampers the percolation of tetrahedrally coordinated water molecules while enhancing the population of topological H-bond defects forming approximately linear H-bonded chains. This work unveils how doping the semiconductor surface affects the local electric field, determining the water splitting rate by influencing the H-bond topologies in the first water layers. This evidence opens new prospects for designing efficient photocatalysts for water splitting.

2.
Chemistry ; : e202401148, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109600

RESUMO

Atomistic modeling can provide insights into the design of novel catalysts in modern industries of chemistry, materials science, and biology. Classical force fields and ab initio calculations have been widely adopted in molecular simulations. How- ever, these methods suffer from the drawbacks of either low accuracy or high cost. Recently, the development of machine learning interatomic potentials (MLIPs) has become more and more popular as they can tackle the problems in question and can deliver rather accurate results at significantly lower computational cost. In this review, the atomistic modeling of catalytic systems with the aid of MLIPs is discussed, showcasing recently developed MLIP models and selected applications for the modeling of catalytic systems. We also highlight the best practices, and challenges for MLIPs and give an outlook for future works on MLIPs in the field of catalysis.

3.
Phys Chem Chem Phys ; 26(31): 21290-21302, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39078670

RESUMO

Although nuclear quantum effects (NQEs) have been considered on bulk liquid water, the impact of these latter on the air-water interface has not yet been reported. Herein, by performing and comparing ab initio molecular dynamics (AIMD) and path integral AIMD (PI-AIMD) simulations, we reveal the impact of NQEs on structural, dynamical and electronic properties as well as IR spectra of the air-water interface at room temperature. NQEs, being able to describe a more accurate proton delocalization in H-bonded system than AIMD, reveal a different structural arrangement and dynamical behaviour of both bulk and interfacial water molecules in comparison to AIMD results. A more de-structured and de-bound water arrangement and coordination are identified when the quantum nature of nuclei are considered for both bulk and interfacial water molecules. Structural properties, such as inter-/intra-molecular bond lengths, coordination numbers and H-bonding angles of bulk and interfacial water molecules here calculated, are affected by NQEs mitigating the overstructured description given by AIMD. Further evidences of an AIMD overstructured description of bulk water are in the computed IR spectra, where an increased absorption peak intensity and an increased strength of the hydrogen-bond network are alleviated by NQEs. In addition, NQEs show a valuable impact on the electronic structure of the air-water interface, reducing the total valence bandwidth and the electronic energy band-gap when passing from bulk to interfacial water. This work proves how NQEs significantly affect properties and features of the air-water interface, that are essential to accurately describe H-bonded interfacial systems.

4.
J Chem Phys ; 160(21)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38832736

RESUMO

Localization procedures are an important tool for analysis of complex systems in quantum chemistry, since canonical molecular orbitals are delocalized and can, therefore, be difficult to align with chemical intuition and obscure information at the local level of the system. This especially applies to calculations obeying periodic boundary conditions. The most commonly used approach to localization is Foster-Boys Wannier functions, which use a unitary transformation to jointly minimize the second moment of the orbitals. This procedure has proven to be robust and fast but has a side effect of often mixing σ- and π-type orbitals. σ/π-separation is achieved by the Pipek-Mezey Wannier function (PMWF) approach [Lehtola and Jónsson, J. Chem. Theory Comput. 10, 642 (2014) and Jónsson et al., J. Chem. Theory Comput. 13, 460 (2017)], which defines the spread functional in terms of partial charges instead. We have implemented a PMWF algorithm in the CP2K software package using the Cardoso-Souloumiac algorithm to enable their application to real-time time-dependent density functional theory. The method is demonstrated on stacked CO2 molecules, linear acetylenic carbon, boron and nitrogen co-doped graphene, and nitrogen-vacancy doped diamond. Finally, we discuss its computational scaling and recent efforts to improve it with fragment approaches.

5.
J Am Chem Soc ; 145(8): 4534-4544, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36780327

RESUMO

Here, we report six novel, easily accessible BODIPY-based agents for cancer treatment. In contrast to established photodynamic therapy (PDT) agents, these BODIPY-based compounds show additional photothermal activity and their cytotoxicity is not dependent on the generation of reactive oxygen species (ROS). The agents show high photocytotoxicity upon irradiation with light and low dark toxicity in different cancer cell lines in 2D culture as well as in 3D multicellular tumor spheroids (MCTSs). The ratio of dark to light toxicity (phototoxic index, PI) of these agents reaches striking values exceeding 830,000 after irradiation with energetically low doses of light at 630 nm. The oxygen-dependent mechanism of action (MOA) of established photosensitizers (PSs) hampers effective clinical deployment of these agents. Under hypoxic conditions (0.2% O2), which are known to limit the efficiency of conventional PSs in solid tumors, photocytotoxicity was induced at the same concentration levels, indicating an oxygen-independent photothermal MOA. With a PI exceeding 360,000 under hypoxic conditions, both PI values are the highest reported to date. We anticipate that small molecule agents with a photothermal MOA, such as the BODIPY-based compounds reported in this work, may overcome this barrier and provide a new avenue to cancer therapy.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Compostos de Boro/farmacologia , Compostos de Boro/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Oxigênio
6.
Phys Chem Chem Phys ; 25(21): 14672-14685, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37211913

RESUMO

In this article, we present the challenges that arise when carrying out spectroscopic simulations within periodic boundary conditions. We present approaches which were proposed in the literature for the calculation of the extension of the electric dipole moment to periodic systems. Further, we describe the challenges arising for the simulation of magnetic properties within periodic boundary conditions and for the simulation of nuclear magnetic resonance shielding tensors and related quantities. Furthermore, issues arising in periodic implementations of vibrational circular dichroism spectroscopy are described, especially for the case of atom-centered basis functions and nuclear velocity perturbation theory.

7.
Chimia (Aarau) ; 77(3): 110-115, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38047812

RESUMO

The efficient and inexpensive conversion of solar energy into chemical bonds, such as in H2 via the photoelectrochemical splitting of H2O, is a promising route to produce green industrial feedstocks and renewable fuels, which is a key goal of the NCCR Catalysis. However, the oxidation product of the water splitting reaction, O2, has little economic or industrial value. Thus, upgrading key chemical species using alternative oxidation reactions is an emerging trend. WO3 has been identified as a unique photoanode material for this purpose since it performs poorly in the oxygen evolution reaction in H2O. Herein we highlight a collaboration in the NCCR Catalysis that has gained insights at the atomic level of the WO3 surface with ab initio computational methods that help to explain its unique catalytic activity. These computational efforts give new context to experimental results employing WO3 photoanodes for the direct photoelectrochemical oxidation of biomass-derived 5-(hydroxymethyl) furfural. While yield for the desired product, 2,5-furandicarboxylic acid is low, insights into the reaction rate constants using kinetic modelling and an electrochemical technique called derivative voltammetry, give indications on how to improve the system.

8.
J Chem Inf Model ; 62(24): 6352-6364, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36445176

RESUMO

We present Deep learning for Collective Variables (DeepCV), a computer code that provides an efficient and customizable implementation of the deep autoencoder neural network (DAENN) algorithm that has been developed in our group for computing collective variables (CVs) and can be used with enhanced sampling methods to reconstruct free energy surfaces of chemical reactions. DeepCV can be used to conveniently calculate molecular features, train models, generate CVs, validate rare events from sampling, and analyze a trajectory for chemical reactions of interest. We use DeepCV in an example study of the conformational transition of cyclohexene, where metadynamics simulations are performed using DAENN-generated CVs. The results show that the adopted CVs give free energies in line with those obtained by previously developed CVs and experimental results. DeepCV is open-source software written in Python/C++ object-oriented languages, based on the TensorFlow framework and distributed free of charge for noncommercial purposes, which can be incorporated into general molecular dynamics software. DeepCV also comes with several additional tools, i.e., an application program interface (API), documentation, and tutorials.


Assuntos
Aprendizado Profundo , Simulação de Dinâmica Molecular , Software , Redes Neurais de Computação , Algoritmos
9.
Phys Chem Chem Phys ; 24(46): 28109-28120, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36385362

RESUMO

In this article, we review recent first principles, anharmonic studies on the molecular vibrations of gaseous formic acid in its monomer form. Transitions identified as fundamentals for both cis- and trans form reported in these studies are collected and supported by results from high-resolution experiments. Attention is given to the effect of coordinate coupling on the convergence of the computed vibrational states.


Assuntos
Formiatos , Vibração , Gases
10.
Phys Chem Chem Phys ; 24(9): 5669-5679, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35179527

RESUMO

The decay of cyclopropanone is a typical example of a photodecomposition process. Ethylene and carbon monoxide are formed following the excitation to the first singlet excited state through a symmetrical or asymmetrical pathway. The results obtained with non-adiabatic molecular dynamics (NAMD) using the delta self-consistent field (ΔSCF) method correspond well to previous experimental and multireference theoretical studies carried out in the gas phase. Moreover, this efficient methodology allows NAMD simulations of cyclopropanone in aqueous solution to be performed, which reveal analogue deactivation mechanisms, but a shorter lifetime and reduced photodissociation as compared to the gas-phase. The excited state dynamics of cyclopropanone hydrate, an enzyme inhibitor, in an aqueous environment are reported as well. Cyclopropanone hydrate strongly interacts with the surrounding solvent via the formation of hydrogen bonds. Excitation to the first singlet excited state shows an asymmetric pathway with cyclopropanone hydrate and propionic acid as the main photoproducts.


Assuntos
Simulação de Dinâmica Molecular , Água , Ligação de Hidrogênio , Solventes , Água/química
11.
J Phys Chem A ; 126(6): 801-812, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35133168

RESUMO

Machine learning has become more and more popular in computational chemistry, as well as in the important field of spectroscopy. In this concise review, we walk the reader through a short summary of machine learning algorithms and a comprehensive discussion on the connection between machine learning methods and vibrational spectroscopy, particularly for the case of infrared and Raman spectroscopy. We also briefly discuss state-of-the-art molecular representations which serve as meaningful inputs for machine learning to predict vibrational spectra. In addition, this review provides an overview of the transferability and best practices of machine learning in the prediction of vibrational spectra as well as possible future research directions.


Assuntos
Algoritmos , Aprendizado de Máquina , Análise Espectral Raman , Vibração
12.
J Chem Phys ; 156(15): 154104, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35459303

RESUMO

The direct energy functional minimization method using the orbital transformation (OT) scheme in the program package CP2K has been employed for Δ self-consistent field (ΔSCF) calculations. The OT method for non-uniform molecular orbitals occupations allows us to apply the ΔSCF method for various kinds of molecules and periodic systems. Vertical excitation energies of heteroaromatic molecules and condensed phase systems, such as solvated ethylene and solvated uracil obeying periodic boundary conditions, are reported using the ΔSCF method. In addition, a Re-phosphate molecule attached to the surface of anatase (TiO2) has been investigated. Additionally, we have implemented a recently proposed state-targeted energy projection ΔSCF algorithm [K. Carter-Fenk and J. M. Herbert, J. Chem. Theory Comput. 16(8), 5067-5082 (2020)] for diagonalization based SCF in CP2K. It is found that the OT scheme provides a smooth and robust SCF convergence for all investigated excitation energies and (non-)periodic systems.


Assuntos
Teoria Quântica , Uracila , Fenômenos Físicos
13.
J Chem Phys ; 156(13): 130901, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35395890

RESUMO

Computational studies of ultrafast photoinduced processes give valuable insights into the photochemical mechanisms of a broad range of compounds. In order to accurately reproduce, interpret, and predict experimental results, which are typically obtained in a condensed phase, it is indispensable to include the condensed phase environment in the computational model. However, most studies are still performed in vacuum due to the high computational cost of state-of-the-art non-adiabatic molecular dynamics (NAMD) simulations. The quantum mechanical/molecular mechanical (QM/MM) solvation method has been a popular model to perform photodynamics in the liquid phase. Nevertheless, the currently used QM/MM embedding techniques cannot sufficiently capture all solute-solvent interactions. In this Perspective, we will discuss the efficient ΔSCF electronic structure method and its applications with respect to the NAMD of solvated compounds, with a particular focus on explicit quantum mechanical solvation. As more research is required for this method to reach its full potential, some challenges and possible directions for future research are presented as well.


Assuntos
Simulação de Dinâmica Molecular , Teoria Quântica , Solventes/química
14.
Molecules ; 27(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35268577

RESUMO

Two sets of functionalised calix[4]arenes, either with a 1,3-crown ether bridge or with an open-chain oligo ether moiety in 1,3-position were prepared and further equipped with additional deprotonisable sulfonamide groups to establish chelating systems for selected cations Sr2+, Ba2+, and Pb2+ ions. To improve the complexation behaviour towards these cations, calix[4]arenes with oligo ether groups and modified crowns of different sizes were synthesized. Association constants were determined by UV/Vis titration in acetonitrile using the respective perchlorate salts and logK values between 3.2 and 8.0 were obtained. These findings were supported by the calculation of the binding energies exemplarily for selected complexes with Ba2+.

15.
Chemistry ; 27(68): 17024-17037, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34486184

RESUMO

Notwithstanding that RuO2 is a promising catalyst for the oxygen evolution reaction (OER), a plethora of fundamental details on its catalytic properties are still elusive, severely limiting its large-scale deployment. It is also established experimentally that corrosion and wettability of metal oxides can, in fact, enhance the catalytic activity for OER owing to the formation of a hydrated surface layer. However, the mechanistic interplay between surface wettability, interfacial water dynamics and OER across RuO2 , and what degree these processes are correlated are still debated. Herein, spin-polarized Density Functional Theory Molecular Dynamics (DFT-MD) simulations, coupled with advanced enhanced sampling methods in the well-tempered metadynamics framework, are applied to gain a global understanding of RuO2 aqueous interface (explicit water solvent) in catalyzing the OER, and hence possibly help in the design of novel catalysts in the context of photochemical water oxidation. The present study quantitatively assesses the free-energy barriers behind the OER at the (110)-RuO2 catalyst surface revealing plausible pathways composing the reaction network of the O2 evolution. In particular, OER is investigated at room temperature when such a surface is exposed to both gas-phase and liquid-phase water. Albeit a unique efficient pathway has been identified in the gas-phase OER, a surprisingly lowest-free-energy-requiring reaction route is possible when (110)-RuO2 is in contact with explicit liquid water. By estimating the free-energy surfaces associated to these processes, we reveal a noticeable water-assisted OER mechanism which involves a crucial proton-transfer-step assisted by the local water environment. These findings pave the way toward the systematic usage of DFT-MD coupled with metadynamics techniques for the fine assessment of the activity of catalysts, considering finite-temperature and explicit-solvent effects.

16.
J Chem Phys ; 155(13): 134116, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34624999

RESUMO

Within periodic boundary conditions, the traditional quantum mechanical position operator is ill-defined, necessitating the use of alternative methods, most commonly the Berry phase formulation in the modern theory of polarization. Since any information about local properties is lost in this change of framework, the Berry phase formulation can only determine the total electric polarization of a system. Previous approaches toward recovering local electric dipole moments have been based on applying the conventional dipole moment operator to the centers of maximally localized Wannier functions (MLWFs). Recently, another approach to local electric dipole moments has been demonstrated in the field of subsystem density functional theory (DFT) embedding. We demonstrate in this work that this approach, aside from its use in ground state DFT-based molecular dynamics, can also be applied to obtain electric dipole moments during real-time propagated time-dependent DFT (RT-TDDFT). Moreover, we present an analogous approach to obtain local electric dipole moments from MLWFs, which enables subsystem analysis in cases where DFT embedding is not applicable. The techniques were implemented in the quantum chemistry software CP2K for the mixed Gaussian and plane wave method and applied to cis-diimide and water in the gas phase, cis-diimide in aqueous solution, and a liquid mixture of dimethyl carbonate and ethylene carbonate to obtain absorption and infrared spectra decomposed into localized subsystem contributions.

17.
J Chem Phys ; 154(10): 104121, 2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33722028

RESUMO

The evaluation of atomic polar tensors and Born Effective Charge (BEC) tensors from Density Functional Perturbation Theory (DFPT) has been implemented in the CP2K code package. This implementation is based on a combination of the Gaussian and plane wave approach for the description of basis functions and arising potentials. The presence of non-local pseudo-potentials has been considered, as well as contributions arising from the basis functions being centered on the atoms. Simulations of both periodic and non-periodic systems have been implemented and carried out. Dipole strengths and infrared absorption spectra have been calculated for two isomers of the tripeptide Ser-Pro-Ala using DFPT and are compared to the results of standard vibrational analyses using finite differences. The spectra are then decomposed into five subsets by employing localized molecular orbitals/maximally localized Wannier functions, and the results are discussed. Moreover, group coupling matrices are employed for visualization of results. Furthermore, the BECs and partial charges of the surface atoms of a periodic (101) anatase (TiO2) slab have been investigated in a periodic framework.

18.
Chimia (Aarau) ; 75(3): 195-201, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33766202

RESUMO

Artificial water splitting is a promising technology that allows the storage of renewable energy in the form of energy-rich compounds. This mini-review showcases how theoretical studies contribute to the under-standing of existing water oxidation catalysts (WOCs) as well as inspiring the development of novel WOCs. In order to understand the chemical complexity of transition metal complexes and their interaction with the solvent environment, the use of sophisticated simulation protocols is necessary. As an illustration, a family of ruthe- nium-based WOCs is presented which were investigated employing a wide range of forefront computational methods with emphasis on ab initiomolecular dynamic based approaches. In those studies a base assisted oxygen-oxygen bond formation was identified as the energetically most favourable reaction mechanism. By examining the role of local environmental effects at ambient temperature and the effect of modifications in the ligand framework, a comprehensible picture of the WOCs can be given, where the latter can serve as a guideline for further experimental and computational studies. In this mini-review, we provide a description of the methods, and the findings of our previous computational studies in compacted form, aimed at scientists with a theoretical as well as experimental background.

19.
J Comput Chem ; 41(17): 1586-1597, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32289192

RESUMO

Water nucleophilic attack is an important step in water oxidation reactions, which have been widely studied using density functional theory (DFT). Nevertheless, a single-determinant DFT picture may be insufficient for a deeper insight into the process, in particular during the oxygen-oxygen bond formation. In this work, we use complete active space self-consistent field calculations and describe an approach for a complete active space analysis along a reaction pathway. This is applied to the water nucleophilic attack at a Ru-based catalyst, which has successfully been used for efficient water oxidation and in silico design of new water oxidation catalysts recently.

20.
J Am Chem Soc ; 141(22): 8846-8857, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31120246

RESUMO

Predictive and mechanistically driven access to polynuclear oxo clusters and related materials remains a grand challenge of inorganic chemistry. We here introduce a novel strategy for synthetic control over highly sought-after transition metal {M4O4} cubanes. They attract interest as molecular water oxidation catalysts that combine features of both heterogeneous oxide catalysts and nature's cuboidal {CaMn4O5} center of photosystem II. For the first time, we demonstrate the outstanding structure-directing effect of straightforward inorganic counteranions in solution on the self-assembly of oxo clusters. We introduce a selective counteranion toolbox for the controlled assembly of di(2-pyridyl) ketone (dpk) with M(OAc)2 (M = Co, Ni) precursors into different cubane types. Perchlorate anions provide selective access to type 2 cubanes with the characteristic {H2O-M2(OR)2-OH2} edge-site, such as [Co4(dpy-C{OH}O)4(OAc)2(H2O)2](ClO4)2. Type 1 cubanes with separated polar faces [Co4(dpy-C{OH}O)4(L2)4] n+ (L2 = OAc, Cl, or OAc and H2O) can be tuned with a wide range of other counteranions. The combination of these counteranion sets with Ni(OAc)2 as precursor selectively produces type 2 Co/Ni-mixed or {Ni4O4} cubanes. Systematic mechanistic experiments in combination with computational studies provide strong evidence for type 2 cubane formation through reaction of the key dimeric building block [M2(dpy-C{OH}O)2(H2O)4]2+ with monomers, such as [Co(dpy-C{OH}O)(OAc)(H2O)3]. Furthermore, both experiments and DFT calculations support an energetically favorable type 1 cubane formation pathway via direct head-to-head combination of two [Co2(dpy-C{OH}O)2(OAc)2(H2O)2] dimers. Finally, the visible-light-driven water oxidation activity of type 1 and 2 cubanes with tuned ligand environments was assessed. We pave the way to efficient design concepts in coordination chemistry through ionic control over cluster assembly pathways. Our comprehensive strategy demonstrates how retrosynthetic analyses can be implemented with readily available assembly directing counteranions to provide rapid access to tuned molecular materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA