Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Med Educ ; 24(1): 774, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030541

RESUMO

BACKGROUND: The coronavirus disease (COVID-19) pandemic has accentuated the need for effective clinical skills training in infectious diseases. This study aimed to explore the influencing factors of infectious disease clinical skills training based on scenario simulation teaching for medical staff in China. METHODS: This hospital-based, cross-sectional study was conducted at the Third People's Hospital of Shenzhen between March and December 2022. Scenario simulation teaching was applied, and factors such as gender, educational level, professional background, and previous experience were examined to determine their impact on qualification outcomes. RESULTS: The study included participants primarily between the ages of 20-40 years, with a higher proportion of women holding university degrees. Nurses and physicians were more likely to qualify, indicating the significance of professional backgrounds. Women showed a higher likelihood of qualifying than men and higher educational attainment correlated with better qualification rates. Prior experience with protective clothing in isolation wards was a significant determinant of successful qualification. Multivariate analysis underscored the influence of sex, education, and previous experience on training effectiveness. CONCLUSION: Scenario simulation is an effective strategy for training clinical skills in treating infectious diseases. This study highlights the importance of considering sex, education, professional background, and prior experience when designing training programs to enhance the efficacy and relevance of infectious disease training.


Assuntos
COVID-19 , Competência Clínica , Treinamento por Simulação , Humanos , COVID-19/epidemiologia , Estudos Transversais , China , Feminino , Masculino , Adulto , SARS-CoV-2 , Adulto Jovem , Corpo Clínico Hospitalar/educação , Pandemias
2.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928421

RESUMO

Neuropathic pain, which refers to pain caused by a lesion or disease of the somatosensory system, represents a wide variety of peripheral or central disorders. Treating neuropathic pain is quite demanding, primarily because of its intricate underlying etiological mechanisms. The central nervous system relies on microglia to maintain balance, as they are associated with serving primary immune responses in the brain next to cell communication. Ferroptosis, driven by phospholipid peroxidation and regulated by iron, is a vital mechanism of cell death regulation. Neuroinflammation can be triggered by ferroptosis in microglia, which contributes to the release of inflammatory cytokines. Conversely, neuroinflammation can induce iron accumulation in microglia, resulting in microglial ferroptosis. Accumulating evidence suggests that neuroinflammation, characterized by glial cell activation and the release of inflammatory substances, significantly exacerbates the development of neuropathic pain. By inhibiting microglial ferroptosis, it may be possible to prevent neuroinflammation and subsequently alleviate neuropathic pain. The activation of the homopentameric α7 subtype of the neuronal nicotinic acetylcholine receptor (α7nAChR) has the potential to suppress microglial activation, transitioning M1 microglia to an M2 phenotype, facilitating the release of anti-inflammatory factors, and ultimately reducing neuropathic pain. Recent years have witnessed a growing recognition of the regulatory role of α7nAChR in ferroptosis, which could be a potential target for treating neuropathic pain. This review summarizes the mechanisms related to α7nAChR and the progress of ferroptosis in neuropathic pain according to recent research. Such an exploration will help to elucidate the relationship between α7nAChR, ferroptosis, and neuroinflammation and provide new insights into neuropathic pain management.


Assuntos
Ferroptose , Microglia , Neuralgia , Doenças Neuroinflamatórias , Receptor Nicotínico de Acetilcolina alfa7 , Neuralgia/metabolismo , Neuralgia/etiologia , Neuralgia/patologia , Humanos , Animais , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Microglia/metabolismo , Microglia/patologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Inflamação/metabolismo , Inflamação/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA