Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Anal Chem ; 93(37): 12628-12638, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34495647

RESUMO

Cancer stem cells (CSCs) are rare and lack definite biomarkers, necessitating new methods for a robust expansion. Here, we developed a microfluidic single-cell culture (SCC) approach for expanding and recovering colorectal CSCs from both cell lines and tumor tissues. By incorporating alginate hydrogels with droplet microfluidics, a high-density microgel array can be formed on a microfluidic chip that allows for single-cell encapsulation and nonadhesive culture. The SCC approach takes advantage of the self-renewal property of stem cells, as only the CSCs can survive in the SCC and form tumorspheres. Consecutive imaging confirmed the formation of single-cell-derived tumorspheres, mainly from a population of small-sized cells. Through on-chip decapsulation of the alginate microgel, ∼6000 live cells can be recovered in a single run, which is sufficient for most biological assays. The recovered cells were verified to have the genetic and phenotypic characteristics of CSCs. Furthermore, multiple CSC-specific targets were identified by comparing the transcriptomics of the CSCs with the primary cancer cells. To summarize, the microgel SCC array offers a label-free approach to obtain sufficient quantities of CSCs and thus is potentially useful for understanding cancer biology and developing personalized CSC-targeting therapies.


Assuntos
Neoplasias Colorretais , Microgéis , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Humanos , Microfluídica , Células-Tronco Neoplásicas
2.
J Immunol ; 200(2): 821-833, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29196456

RESUMO

Synovitis is a key contributor to the inflammatory environment in osteoarthritis (OA) joints. Currently, the biological therapy of OA is not satisfactory in multiple single-target trials on anti-TNF agents, or IL-1 antagonists. Systems biological understanding of the phosphorylation state in OA synovium is warranted to direct further therapeutic strategies. Therefore, in this study, we compared the human synovial phosphoproteome of the OA with the acute joint fracture subjects. We found that OA synovium had significantly more phosphoproteins, and 82 phosphoproteins could only be specifically found in all the OA samples. Differentially expressed proteins of the OA synovium were focusing on endoplasmic reticulum-/Golgi-associated secretion and negative regulation of cell proliferation, which was verified through an IL-1ß-treated human synoviocyte (HS) in vitro model. With data-independent acquisition-based mass spectrometry, we found that IL-1ß could induce HS to secrete proteins that were significantly associated with the endosomal/vacuolar pathway, endoplasmic reticulum/Golgi secretion, complement activation, and collagen degradation. Especially, we found that while specifically suppressing HS endocytosis, IL-1ß could activate the secretion of 25 TNF-associated proteins, and the change of SERPINE2 and COL3A1 secretion was verified by immunoblotting. In conclusion, our results suggest that OA synovium has a polarized phosphoproteome to inhibit proliferation and maintain active secretion of HS, whereas IL-1ß alone can transform HS to produce a synovitis-associated secretome, containing numerous TNF-associated secretory proteins in a TNF-independent mode.


Assuntos
Proteínas de Transporte/metabolismo , Interleucina-1beta/metabolismo , Proteômica , Sinoviócitos/metabolismo , Fatores de Necrose Tumoral/metabolismo , Biomarcadores , Proliferação de Células , Biologia Computacional/métodos , Endocitose , Fibroblastos/metabolismo , Humanos , Osteoartrite/etiologia , Osteoartrite/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica , Proteômica/métodos , Transdução de Sinais , Membrana Sinovial/metabolismo , Sinovite/etiologia , Sinovite/metabolismo
3.
J Proteome Res ; 15(11): 4060-4072, 2016 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-27470641

RESUMO

Identification of all phosphorylation forms of known proteins is a major goal of the Chromosome-Centric Human Proteome Project (C-HPP). Recent studies have found that certain phosphoproteins can be encapsulated in exosomes and function as key regulators in tumor microenvironment, but no deep coverage phosphoproteome of human exosomes has been reported to date, which makes the exosome a potential source for the new phosphosite discovery. In this study, we performed highly optimized MS analyses on the exosomal and cellular proteins isolated from human colorectal cancer SW620 cells. With stringent data quality control, 313 phosphoproteins with 1091 phosphosites were confidently identified from the SW620 exosome, from which 202 new phosphosites were detected. Exosomal phosphoproteins were significantly enriched in the 11q12.1-13.5 region of chromosome 11 and had a remarkably high level of tyrosine-phosphorylated proteins (6.4%), which were functionally relevant to ephrin signaling pathway-directed cytoskeleton remodeling. In conclusion, we here report the first high-coverage phosphoproteome of human cell-secreted exosomes, which leads to the identification of new phosphosites for C-HPP. Our findings provide insights into the exosomal phosphoprotein systems that help to understand the signaling language being delivered by exosomes in cell-cell communications. The mass spectrometry proteomics data have been deposited to the ProteomeXchange consortium with the data set identifier PXD004079, and iProX database (accession number: IPX00076800).


Assuntos
Neoplasias Colorretais/patologia , Bases de Dados de Proteínas/tendências , Exossomos , Fosfoproteínas/análise , Proteoma/genética , Comunicação Celular , Linhagem Celular Tumoral , Cromossomos Humanos Par 11/genética , Neoplasias Colorretais/genética , Projeto Genoma Humano , Humanos , Espectrometria de Massas , Proteínas de Neoplasias , Fosfopeptídeos/análise , Fosfoproteínas/genética , Proteômica/métodos , Transdução de Sinais
4.
Biochem Biophys Res Commun ; 450(1): 538-44, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24928389

RESUMO

IL-1ß is readily detectable in numerous joint inflammations. It can change the transcriptomic signature of fibroblast-like synoviocytes (FLS) of arthritis toward promoting migration and invasion that are relevant to arthritis progression. We hypothesize that IL-1ß partially contributes to the onset of osteoarthritis (OA). We compared the tissue samples from OA and fracture subjects and found that IL-1ß expression was significantly higher in the OA synovium, while TNF-α expression showed no significance. We demonstrated that IL-1ß significantly increases the IL-6 and IL-8 secretions of human normal FLS; however, IL-1ß does not induce TNF secretion. With metabolic labeling based proteomics and pathway analysis, we found that IL-1ß significantly increases the TNF downstream protein expression in FLS even with complete absence of TNF and/or blocking of the NF-κB pathway. Among these proteins, we verified that p62 can differentiate the OA from fracture synovitis. In conclusion, we demonstrated that IL-1ß can amplify the TNF downstream protein signals in human synoviocytes in a TNF-independent manner; in addition, p62 is a potential FLS biomarker for synovitis.


Assuntos
Interleucina-1beta/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Sinovite/metabolismo , Sinovite/patologia , Fator de Necrose Tumoral alfa/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Humanos , Proteoma/metabolismo
5.
Lab Chip ; 24(6): 1702-1714, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38321884

RESUMO

The suboptimal prognosis associated with drug therapy for renal cancer can be attributed to the presence of stem-cell-like renal cancer cells. However, the limited number of these cells prevents conventional drug screening assays from effectively assessing the response of renal cancer stem cells to anti-cancer agents. To address this issue, the present study employed microfluidic single-cell culture arrays to expand renal cancer stem cells by exploiting the anti-apoptosis and self-renewal properties of tumor stem cells. A microfluidic chip with 18 000 hydrophilic microwells was designed and fabricated to establish the single-cell culture array. Over a 7 day culture, the large-scale single-cell culture yielded a limited quantity of single-cell-derived tumorspheres. The sphere formation rates for Caki-1, 786-O, and ACHN cells were determined to be 8.74 ± 0.53%, 12.02 ± 1.43%, and 4.98 ± 1.68%, respectively. The expanded cells exhibited stemness characteristics, as indicated by immunofluorescence, flow cytometry, serial passaging, and in vitro differentiation assays. Additionally, the comparative transcriptomic analysis showed significant differences in the gene expression patterns of the expanded cells compared to the differentiated renal cancer cells. The drug testing indicated that renal cancer stem cells exhibited reduced sensitivity towards the tyrosine kinase inhibitors sorafenib and sunitinib, compared to differentiated renal cancer cells. This reduced sensitivity can be attributed to the elevated expression levels of tyrosine kinase in renal cancer stem cells. This present study provides evidence that the utilization of microfluidic single-cell culture arrays for selective cell expansion can facilitate drug testing of renal cancer stem cells.


Assuntos
Antineoplásicos , Carcinoma de Células Renais , Neoplasias Renais , Humanos , Microfluídica , Carcinoma de Células Renais/tratamento farmacológico , Neoplasias Renais/tratamento farmacológico , Células-Tronco Neoplásicas/metabolismo , Técnicas de Cultura de Células , Antineoplásicos/metabolismo , Proliferação de Células , Linhagem Celular Tumoral
6.
J Mol Biol ; 436(16): 168668, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908784

RESUMO

The ability to adapt to osmotically diverse and fluctuating environments is critical to the survival and resilience of bacteria that colonize the human gut and urinary tract. Environmental stress often provides cross-protection against other challenges and increases antibiotic tolerance of bacteria. Thus, it is critical to understand how E. coli and other microbes survive and adapt to stress conditions. The osmotically inducible protein Y (OsmY) is significantly upregulated in response to hypertonicity. Yet its function remains unknown for decades. We determined the solution structure and dynamics of OsmY by nuclear magnetic resonance spectroscopy, which revealed that the two Bacterial OsmY and Nodulation (BON) domains of the protein are flexibly linked under low- and high-salinity conditions. In-cell solid-state NMR further indicates that there are no gross structural changes in OsmY as a function of osmotic stress. Using cryo-electron and super-resolution fluorescence microscopy, we show that OsmY attenuates plasmolysis-induced structural changes in E. coli and improves the time to growth resumption after osmotic upshift. Structure-guided mutational and functional studies demonstrate that exposed hydrophobic residues in the BON1 domain are critical for the function of OsmY. We find no evidence for membrane interaction of the BON domains of OsmY, contrary to current assumptions. Instead, at high ionic strength, we observe an interaction with the water channel, AqpZ. Thus, OsmY does not play a simple structural role in E. coli but may influence a cascade of osmoregulatory functions of the cell.

7.
Microbiol Spectr ; 11(6): e0224823, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37888986

RESUMO

IMPORTANCE: The availability of nutrients to microorganisms varies considerably between different environments, and changes can occur rapidly. As a general rule, a fast growth rate-typically growth on glucose-is associated with the repression of other carbohydrate utilization genes, but it is not clear to what extent catabolite repression is exerted by other sugars. We investigated the hierarchy of sugar utilization after substrate transitions in Lactococcus cremoris. For this, we determined the proteome and carbohydrate utilization capacity after growth on different sugars. The results show that the preparedness of cells for the utilization of "slower" sugars is not strictly determined by the growth rate. The data point to individual proteins relevant for various sugar transitions and suggest that the evolutionary history of the organism might be responsible for deviations from a strictly growth rate-related sugar catabolization hierarchy.


Assuntos
Carboidratos , Açúcares , Glucose/metabolismo
8.
Adv Sci (Weinh) ; 10(7): e2205863, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36646503

RESUMO

Despite the advantages of digital nucleic acid analysis (DNAA) in terms of sensitivity, precision, and resolution, current DNAA methods commonly suffer a limitation in multiplexing capacity. To address this issue, a droplet encoding-pairing enabled DNAA multiplexing strategy is developed, wherein unique tricolor combinations are deployed to index individual primer droplets. The template droplets and primer droplets are sequentially introduced into a microfluidic chip with a calabash-shaped microwell array and are pairwise trapped and merged in the microwells. Pre-merging and post-amplification image analysis with a machine learning algorithm is used to identify, enumerate, and address the droplets. By incorporating the amplification signals with droplet encoding information, simultaneous quantitative detection of multiple targets is achieved. This strategy allows for the establishment of flexible multiplexed DNAA by simply adjusting the primer droplet library. Its flexibility is demonstrated by establishing two multiplexed (8-plex) droplet digital loop-mediated isothermal amplification (mddLAMP) assays for individually detecting lower respiratory tract infection and urinary tract infection causative pathogens. Clinical sample analysis shows that the microbial detection outcomes of the mddLAMP assays are consistent with those of the conventional assay. This DNAA multiplexing strategy can achieve flexible high-order multiplexing on demand, making it a desirable tool for high-content pathogen detection.


Assuntos
Microfluídica , Técnicas de Amplificação de Ácido Nucleico , Técnicas de Amplificação de Ácido Nucleico/métodos
9.
ACS Biomater Sci Eng ; 8(8): 3623-3632, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35786837

RESUMO

The microgel single-cell culture approach we developed to expand tumor stem cells (TSCs) is associated with limited TSC production, which can be attributable to cell viability loss in microgel formation and tumorsphere expansion limitation caused by hydrogel stiffness. In this work, we developed a gel-free single-cell culture array on a microfluidic chip to overcome these issues. The microfluidic chip used in the study has a 16,000 hydrophilic microchamber array, which can capture ∼2000 single cells at a time. After cell capturing, the cell culture chambers were enclosed by forming a chitosan layer through interactions between chitosan and alginate, thus preventing cell loss in the gel-free culture. The hydrophilic coating prevented cell adhesion, so only TSCs with anti-apoptosis and self-renewal properties can survive the harsh culture and form tumorspheres. After a 7 day culture, 19.04% of the HCT116 colon cancer cells formed single-cell-derived tumorspheres with an average size of 46.59 ± 10.58 µm. Compared with the microgel single-cell culture, sphere-forming rate and TSC expansion efficiency were significantly improved by using this gel-free single-cell culture array. After cell culture, the chitosan layer could be destabilized easily, thus allowing recovery of the tumorspheres from the microchip by applying a reverse flow. Approximately 13,600 cells could be obtained in a single culture, which can be used for off-chip cell assays. Flow cytometry analysis indicated high proportions of LGR5(+) and SOX2(+) cells within the single-cell-derived tumorspheres. Moreover, the differentiation experiments confirmed the multi-lineage differentiation potential of single-cell-derived tumorspheres. The gel-free single-cell culture offers a label-free approach to obtain sufficient amounts of TSCs, which is valuable for tumor biology research and the development of TSC-specific therapeutic strategies.


Assuntos
Quitosana , Neoplasias do Colo , Microgéis , Técnicas de Cultura de Células , Quitosana/farmacologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Humanos , Microfluídica , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
10.
Biosens Bioelectron ; 195: 113684, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34607116

RESUMO

The application of conventional chemiluminescence immunoassay (CLIA) in resource-limited settings is limited due to the large apparatus footprint, cumbersome operation and maintenance process, and high consumption of reagents. To address this issue, we developed an active droplet-array (ADA) microfluidics-based CLIA system, which consists of a compact microchip analyzer and microfluidic chips with preloaded reagents. The microfluidic chip contains microslit-connected microchambers, in which all the required reagents were preloaded in water-in-oil droplets. The microfluidic chip analyzer can manipulate five microfluidic chips in parallel in a single run. By interacting the microchip with magnetic, thermal, optical mechanisms programmatically, the entire workflow of CLIA can be accomplished in an automated manner. With the proposed CLIA, the detection of procalcitonin (PCT) can be completed in 12 min, with a limit of detection (LOD) of 0.044 ng mL-1 and a detection range from 0.044 to 100 ng mL-1. We found a good linear correlation between the microfluidic CLIA and the conventional electrochemiluminescence immunoassay (R2=0.98).The microfluidic CLIA has significant advantages over the conventional ELISA in detection sensitivity, dynamic range, instrument size and turnaround time, and can provide more consistent and reliable results than the lateral flow immunoassays. The compact microfluidic system can perform automated and parallelized CLIA in a short turnaround time, and thus well suited to Point-of-Care detection of disease biomarkers.


Assuntos
Técnicas Biossensoriais , Microfluídica , Imunoensaio , Luminescência , Sistemas Automatizados de Assistência Junto ao Leito , Pró-Calcitonina
11.
Methods Mol Biol ; 2305: 193-201, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33950391

RESUMO

In this chapter, we describe the preparatory and spectroscopic procedures for conducting solid-state NMR experiments on microtubules (MTs) obtained from human cells and their complexes with microtubule-associated proteins (MAPs). Next to labeling and functional assembly of MTs and MT-MAP complexes, we discuss solid-state NMR approaches, including fast MAS and hyperpolarization methods that can be used to examine these systems. Such studies can provide novel insight into the dynamic properties of MTs and MT-MAP complexes.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/química , Microtúbulos/química , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Tubulina (Proteína)/química
12.
Transl Cancer Res ; 9(1): 21-29, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35117154

RESUMO

BACKGROUND: We sought to determine the differences with respect to the proteome of nasopharyngeal tissues between patients with nasopharyngeal carcinoma (NPC) and healthy controls by using sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATHTM-MS) and ingenuity pathway analysis (IPA). Our primary purpose was to identify specific protein markers that can be applied for diagnosis or treatment of NPC. METHODS: The CNE-1, CNE-2 and H1299 cell lines were cultured in stable isotope labeling of amino acids in cell culture (SILAC) medium for 10 generations to obtain labeled proteins. Thirty samples of NPC and 30 healthy control nasopharyngeal tissues were collected from the Department of Otolaryngology of the First Affiliated Hospital of Jinan University. Proteome of the nasopharyngeal tissues were analyzed and compared by SWATH-MS to identify differently expressed proteins. Further, extraction of target proteins and biological pathways was performed by IPA. Super-SILAC technique and liquid chromatography-tandem mass spectrometry were used to verify the reliability of the data obtained using SWATH-MS. RESULTS: We identified 1,415 differentially expressed proteins between NPC patients and healthy controls. On IPA analysis, EIF2AK2 and MAPK1 proteins were found to be enriched in multiple biological pathways and functional networks. CONCLUSIONS: The differentially expressed proteins EIF2AK2 and MAPK seem to play an important role in the biological network of NPC or may help discover the specific functional proteins of NPC. Further studies are required to identify the pathways and molecular mechanisms that underlie NPC.

13.
Nat Commun ; 11(1): 18, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31896752

RESUMO

Microtubules are important components of the eukaryotic cytoskeleton. Their structural organization is regulated by nucleotide binding and many microtubule-associated proteins (MAPs). While cryo-EM and X-ray crystallography have provided detailed views of interactions between MAPs with the microtubule lattice, little is known about how MAPs and their intrinsically disordered regions interact with the dynamic microtubule surface. NMR carries the potential to directly probe such interactions but so far has been precluded by the low tubulin yield. We present a protocol to produce [13C, 15N]-labeled, functional microtubules (MTs) from human cells for solid-state NMR studies. This approach allowed us to demonstrate that MAPs can differently modulate the fast time-scale dynamics of C-terminal tubulin tails, suggesting distinct interaction modes. Our results pave the way for in-depth NMR studies of protein dynamics involved in MT assembly and their interactions with other cellular components.


Assuntos
Espectroscopia de Ressonância Magnética , Proteínas Associadas aos Microtúbulos , Microtúbulos , Humanos , Sítios de Ligação , Isótopos de Carbono , Células HeLa , Espectroscopia de Ressonância Magnética/métodos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Isótopos de Nitrogênio , Domínios Proteicos , Tubulina (Proteína)/metabolismo
15.
Water Environ Res ; 91(9): 906-917, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31033132

RESUMO

This study selected and tested five submerged aquatic vegetation-based (SAV) wetlands to improve highway runoff treatment in best management practices. The removal efficiencies of suspended solid (SS), chemical oxygen demand (COD), total nitrogen (TN), ammonia nitrogen ( NH 4 + - N ), and total phosphorus (TP) in the five SAV wetlands were analyzed. Furthermore, the lead (Pb) and zinc (Zn) accumulation capabilities of five submerged macrophytes were determined. The obtained results show that Ceratophyllum demersum wetlands achieved the highest nutrient removal and had the heavy metal accumulation property. Vallisneria natans showed the highest bioaccumulation of Pb among all tested species. Ceratophyllum demersum wetlands showed the highest average removal efficiencies of SS (82.97%), COD (62.08%), TN (77.63%), NH 4 + - N (76.24%), TP (77.55%), Pb (96.24%), and Zn (91.23%). The tendencies of contaminant removal showed seasonal variation, and SAV wetlands performed better in summer than in spring and autumn. Consequently, SAV wetlands showed selectivity for contaminant removal. PRACTITIONER POINTS: Chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in highway runoff were removed by submerged aquatic vegetation (SAV). Ceratophyllum demersum and Myriophyllum spicatum wetlands performed well on heavy metal removing. Ceratophyllum demersum showed the highest removal efficiencies of TSS, COD, TN, NH 4 + - N , and TP. The SAV wetlands performed better in summer than in other seasons.


Assuntos
Purificação da Água , Áreas Alagadas , Análise da Demanda Biológica de Oxigênio , Nitrogênio , Fósforo , Poluição da Água
16.
Nat Commun ; 10(1): 4536, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586050

RESUMO

Liquid-liquid phase separation is increasingly recognized as a process involved in cellular organization. Thus far, a detailed structural characterization of this intrinsically heterogeneous process has been challenging. Here we combine solid- and solution-state NMR spectroscopy to obtain atomic-level insights into the assembly and maturation of cytoplasmic processing bodies that contain mRNA as well as enzymes involved in mRNA degradation. In detail, we have studied the enhancer of decapping 3 (Edc3) protein that is a central hub for processing body formation in yeast. Our results reveal that Edc3 domains exhibit diverse levels of structural organization and dynamics after liquid-liquid phase separation. In addition, we find that interactions between the different Edc3 domains and between Edc3 and RNA in solution are largely preserved in the condensed protein state, allowing processing bodies to rapidly form and dissociate upon small alterations in the cellular environment.


Assuntos
Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , RNA Fúngico , Eletricidade Estática
17.
Nat Commun ; 10(1): 5236, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748546

RESUMO

CAMSAP/Patronins regulate microtubule minus-end dynamics. Their end specificity is mediated by their CKK domains, which we proposed recognise specific tubulin conformations found at minus ends. To critically test this idea, we compared the human CAMSAP1 CKK domain (HsCKK) with a CKK domain from Naegleria gruberi (NgCKK), which lacks minus-end specificity. Here we report near-atomic cryo-electron microscopy structures of HsCKK- and NgCKK-microtubule complexes, which show that these CKK domains share the same protein fold, bind at the intradimer interprotofilament tubulin junction, but exhibit different footprints on microtubules. NMR experiments show that both HsCKK and NgCKK are remarkably rigid. However, whereas NgCKK binding does not alter the microtubule architecture, HsCKK remodels its microtubule interaction site and changes the underlying polymer structure because the tubulin lattice conformation is not optimal for its binding. Thus, in contrast to many MAPs, the HsCKK domain can differentiate subtly specific tubulin conformations to enable microtubule minus-end recognition.


Assuntos
Proteínas Associadas aos Microtúbulos/ultraestrutura , Microtúbulos/ultraestrutura , Naegleria/ultraestrutura , Tubulina (Proteína)/ultraestrutura , Microscopia Crioeletrônica , Humanos , Espectroscopia de Ressonância Magnética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Modelos Moleculares , Naegleria/metabolismo , Ligação Proteica , Domínios Proteicos , Tubulina (Proteína)/metabolismo
18.
Sci Rep ; 7: 41191, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28117408

RESUMO

Nasopharyngeal carcinoma (NPC) is a serious threat to public health, and the biomarker discovery is of urgent needs. The data-independent mode (DIA) based sequential window acquisition of all theoretical fragment-ion spectra (SWATH) mass spectrometry (MS) has been proved to be precise in protein quantitation and efficient for cancer biomarker researches. In this study, we performed the first SWATH-MS analysis comparing the NPC and normal tissues. Spike-in stable isotope labeling by amino acids in cell culture (super-SILAC) MS was used as a shotgun reference. We identified and quantified 1414 proteins across all SWATH-MS analyses. We found that SWATH-MS had a unique feature to preferentially detect proteins with smaller molecular weights than either super-SILAC MS or human proteome background. With SWATH-MS, 29 significant differentially express proteins (DEPs) were identified. Among them, carbonic anhydrase 2 (CA2) was selected for further validation per novelty, MS quality and other supporting rationale. With the tissue microarray analysis, we found that CA2 had an AUC of 0.94 in differentiating NPC from normal tissue samples. In conclusion, SWATH-MS has unique features in proteome analysis, and it leads to the identification of CA2 as a potentially new diagnostic biomarker for NPC.


Assuntos
Biomarcadores Tumorais/metabolismo , Anidrase Carbônica II/metabolismo , Carcinoma/diagnóstico , Neoplasias Nasofaríngeas/diagnóstico , Proteômica/métodos , Anidrase Carbônica II/análise , Carcinoma/metabolismo , Linhagem Celular Tumoral , Humanos , Espectrometria de Massas , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/metabolismo , Sensibilidade e Especificidade
19.
Nat Struct Mol Biol ; 24(11): 931-943, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28991265

RESUMO

CAMSAP and Patronin family members regulate microtubule minus-end stability and localization and thus organize noncentrosomal microtubule networks, which are essential for cell division, polarization and differentiation. Here, we found that the CAMSAP C-terminal CKK domain is widely present among eukaryotes and autonomously recognizes microtubule minus ends. Through a combination of structural approaches, we uncovered how mammalian CKK binds between two tubulin dimers at the interprotofilament interface on the outer microtubule surface. In vitro reconstitution assays combined with high-resolution fluorescence microscopy and cryo-electron tomography suggested that CKK preferentially associates with the transition zone between curved protofilaments and the regular microtubule lattice. We propose that minus-end-specific features of the interprotofilament interface at this site serve as the basis for CKK's minus-end preference. The steric clash between microtubule-bound CKK and kinesin motors explains how CKK protects microtubule minus ends against kinesin-13-induced depolymerization and thus controls the stability of free microtubule minus ends.


Assuntos
Cinesinas/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Eucariotos , Microscopia de Fluorescência , Ligação Proteica
20.
J Zhejiang Univ Sci B ; 11(7): 497-505, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20593514

RESUMO

Sewage sludge composting is an important environmental measure. The reduction of nitrogen loss is a critical aim of compost maturation, and the addition of spent mushrooms (SMs) and herbal residues (HRs) may be helpful. To evaluate the nitrogen transformations during co-composting of sewage sludge, SMs, and HRs, windrows were constructed in a residual processing plant. Dewatered sewage sludge and sawdust were mixed with SMs and HRs at two proportions on a fresh weight basis, 3:1:1 (sewage sludge:sawdust:SMs or HRs) and 3:1:2 (sewage sludge:sawdust:SMs or HRs). The mixture was then composted for 40 d. Changes in the physicochemical characteristic of sewage sludge during composting were recorded and analyzed. Addition of SMs and HRs accelerated the temperature rise, mediating a quicker composting maturation time compared to control. The addition also resulted in lower nitrogen losses and higher nitrate nitrogen levels in the compost products. Among the windrows, SM and HR addition improved the nitrogen status. The total nitrogen (TN) and nitrogen losses for SM and HR treatments ranged from 22.45 to 24.99 g/kg and from 10.2% to 22.4% over the control values (18.66-21.57 g/kg and 40.5%-64.2%, respectively). The pile with the highest proportion of SMs (3:1:2 (sewage sludge:sawdust:SMs)) had the highest TN level and the lowest nitrogen loss. The germination index (GI) values for all samples at maturity were above 80%, demonstrating optimal maturity. The addition of SMs and HRs augments sewage composting.


Assuntos
Nitrogênio/análise , Esgotos/análise , Agaricales/química , Amônia/análise , Carbono/análise , Concentração de Íons de Hidrogênio , Nitratos/análise , Plantas/química , Solo/análise , Temperatura , Madeira/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA