Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Legal Med ; 138(5): 2037-2047, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38802694

RESUMO

In forensic practice, determining the postmortem submersion interval (PMSI) and cause-of-death of cadavers in aquatic ecosystems has always been challenging task. Traditional approaches are not yet able to address these issues effectively and adequately. Our previous study proposed novel models to predict the PMSI and cause-of-death based on metabolites of blood from rats immersed in freshwater. However, with the advance of putrefaction, it is hardly to obtain blood samples beyond 3 days postmortem. To further assess the feasibility of PMSI estimation and drowning diagnosis in the later postmortem phase, gastrocnemius, the more degradation-resistant tissue, was collected from drowned rats and postmortem submersion model in freshwater immediately after death, and at 1 day, 3 days, 5 days, 7 days, and 10 days postmortem respectively. Then the samples were analyzed with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to investigate the dynamic changes of the metabolites. A total of 924 metabolites were identified. Similar chronological changes of gastrocnemius metabolites were observed in the drowning and postmortem submersion groups. The difference in metabolic profiles between drowning and postmortem submersion groups was only evident in the initial 1 day postmortem, which was faded as the PMSI extension. Nineteen metabolites representing temporally-dynamic patterns were selected as biomarkers for PMSI estimation. A regression model was built based on these biomarkers with random forest algorithm, which yielded a mean absolute error (± SE) of 5.856 (± 1.296) h on validation samples from an independent experiment. These findings added to our knowledge of chronological changes in muscle metabolites from submerged vertebrate remains during decomposition, which provided a new perspective for PMSI estimation.


Assuntos
Afogamento , Água Doce , Imersão , Metabolômica , Modelos Animais , Músculo Esquelético , Mudanças Depois da Morte , Animais , Músculo Esquelético/metabolismo , Afogamento/diagnóstico , Afogamento/metabolismo , Masculino , Cromatografia Líquida , Espectrometria de Massas em Tandem , Ratos , Ratos Sprague-Dawley , Biomarcadores/metabolismo
2.
Fa Yi Xue Za Zhi ; 39(6): 596-600, 2023 Dec 25.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-38228479

RESUMO

Wound age estimation is the core content in the practice of forensic medicine. Accurate estimation of wound age is a scientific question that needs to be urgently solved by forensic scientists at home and abroad. Metabolomics techniques can effectively detect endogenous metabolites produced by internal or external stimulating factors and describe the dynamic changes of metabolites in vivo. It has the advantages of strong operability, high detection efficiency and accurate quantitative results. Machine learning algorithm has special advantages in processing high-dimensional data sets, which can effectively mine biological information and truly reflect the physiological, disease or injury state of the body. It is a new technical means for efficiently processing high-throughput big data. This paper reviews the status and advantages of metabolomic techniques combined with machine learning algorithm in the research of wound age estimation, and provides new ideas for this research.


Assuntos
Algoritmos , Aprendizado de Máquina , Medicina Legal , Metabolômica , Big Data
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA