RESUMO
Nanoparticles (NPs) are becoming increasingly important novel materials for many purposes, including basic research, medicine, agriculture, and engineering. Increasing human and environmental exposure to these promising compounds requires assessment of their potential health risks. While the general direct cytotoxicity of NPs is often routinely measured, more indirect possible long-term effects, such as reproductive or developmental neurotoxicity (DNT), have been studied only occasionally and, if so, mostly on non-human animal models, such as zebrafish embryos. In this present study, we employed a well-characterized human neuronal precursor cell line to test the concentration-dependent DNT of green-manufactured copper sulfide (CuS) nanoparticles on crucial early events in human brain development. CuS NPs turned out to be generally cytotoxic in the low ppm range. Using an established prediction model, we found a clear DNT potential of CuS NPs on neuronal precursor cell migration and neurite outgrowth, with IC50 values 10 times and 5 times, respectively, lower for the specific DNT endpoint than for general cytotoxicity. We conclude that, in addition to the opportunities of NPs, their risks to human health should be carefully considered.
Assuntos
Cobre , Nanopartículas Metálicas , Neurônios , Humanos , Cobre/toxicidade , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Neurônios/efeitos dos fármacos , Sulfetos/toxicidade , Sulfetos/química , Movimento Celular/efeitos dos fármacos , Linhagem Celular , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/patologia , Nanopartículas/toxicidade , Nanopartículas/química , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Sobrevivência Celular/efeitos dos fármacosRESUMO
BACKGROUND: Marula (Sclerocarya birrea) is an indigenous African fruit-bearing tree with many commercial uses; however, de-kernelled seeds generated from marula fruit-processing are wasted. The phytochemical constituents of de-kernelled marula seeds have not been investigated previously and its extract/tea may potentially serve as a promising source of antioxidants and phytochemicals. This study aimed to investigate the effect of different extraction methods (maceration and decoction) on the recovery of phenolic compounds, sugars, organic acids, and antioxidants from de-kernelled marula seeds. RESULTS: Extracts produced from decoction for 30 min contained the highest phenolic content (2253.93 ± 25.72 mg gallic acid equivalent kg-1 extract), flavonoid content (1020.99 ± 23.90 mg rutin equivalent kg-1 extract), as well as combined sugars and organic acids (1884.03 mg kg-1 extract). Fourier-transform infrared spectroscopy analysis confirmed the presence of functional groups typically present in phenolic compounds, sugars, and organic acids in the extracts obtained from decoction. CONCLUSION: The characterization revealed that decoction extraction increased solubility, variety, and yield of phytochemical and antioxidant compounds recovered from de-kernelled marula seeds. The highest concentrations of phytochemicals were obtained using the decoction method. This study may therefore pave the way for extract composition and future utilization of de-kernelled marula seeds in the food industry. © 2023 Society of Chemical Industry.
Assuntos
Anacardiaceae , Antioxidantes , Antioxidantes/química , Extratos Vegetais/química , Sementes/química , Fenóis/análise , Anacardiaceae/química , Flavonoides/análise , Compostos Fitoquímicos/química , AçúcaresRESUMO
Due to the importance of benzodiazepine drugs in clinical practice, such as the treatment of anxiety disorders, depression, and insomnia and the side effects of classical benzodiazepines, the study of new benzodiazepine agonists has received much attentions. In this work, we used in silico methods to explore the molecular mechanism of 1,2,4-triazolo [1,5-a] pyrimidinone derivatives in the modulation of α1ß2γ2 subtype of GABAA receptor. To this aim, molecular docking, molecular dynamics simulation (MD), post-MD analysis, binding free energy calculation, and prediction of ADME properties were performed. Results showed that all new compounds have a better binding affinity for the Benzodiazepine (BZD) site of the receptor than diazepam and compound 4c had the highest affinity among them. Moreover, a good agreement was observed between the calculated ΔGbinding and experimental IC50 values. Also, we noticed that residues in loop regions (particularly loop C and D-F in α1 and γ2 subunits, respectively) forming BZD binding site, take part in forming several H-bonds between the agonists and the receptor. Ser205, Thr207, Tyr160, and His102 of α1 subunit and Thr207 of γ2 subunit are mainly involved in forming H-bonds. Also, the orientation of agonists in the BZD binding site leads to π-π interactions with hydrophobic residues in loops A-F. Based on the DCCM analysis, the correlated motions in the γ2 subunit residues are greater than those of α1 subunit residues. Further, predicted ADME results indicated that all agonists meet the criteria. The triplicate MD simulation showed the reproducibility of the results and strengthened the study. Our results provide a comprehensive insight into the receptor-agonist interactions and clues for designing future BZD agonists.
Assuntos
Benzodiazepinas , Receptores de GABA-A , Benzodiazepinas/química , Benzodiazepinas/metabolismo , Benzodiazepinas/farmacologia , Sítios de Ligação , Diazepam/farmacologia , Simulação de Acoplamento Molecular , Purinas , Pirimidinonas/farmacologia , Receptores de GABA-A/metabolismo , Reprodutibilidade dos TestesRESUMO
In the new field of quantum plasmonics, plasmonic excitations of silver and gold nanoparticles are utilized to manipulate and control light-matter interactions at the nanoscale. While quantum plasmons can be described with atomistic detail using Time-Dependent Density Functional Theory (DFT), such studies are computationally challenging due to the size of the nanoparticles. An efficient alternative is to employ DFT without approximations only for the relatively fast ground state calculations and use tight-binding approximations in the demanding linear response calculations. In this work, we use this approach to investigate the nature of plasmonic excitations under the variation of the separation distance between two nanoparticles. We thereby provide complementary characterizations of these excitations in terms of Kohn-Sham single-orbital transitions, intrinsic localized molecular fragment orbitals, scaling of the electron-electron interactions, and probability of electron tunneling between monomers.
RESUMO
Biosynthesis of silver nanoparticles (AgNPs) from marine actinobacteria offers a promising avenue for exploring bacterial extracts as reducing and stabilizing agents. We report extracellular extracts of Rhodococcus rhodochrous (MOSEL-ME29) and Streptomyces sp. (MOSEL-ME28), identified by 16S rRNA gene sequencing for synthesis of AgNPs. Ultrafine silver nanoparticles were biosynthesized using the extracts of R. rhodochrous and Streptomyces sp. and their possible therapeutic applications were studied. The physicochemical properties of nanoparticles were established by HR-SEM/TEM, SAED, UV-Vis, EDS, XRD, and FTIR. UV-Vis spectra displayed characteristic absorption at 430 nm and 412 nm for AgNPs from Streptomyces sp. (S-AgNPs) and Rhodococcus sp. (R-AgNPs), respectively. HR-SEM/TEM, XRD, EDS analysis confirmed the spherical shape, crystalline nature, and elemental formation of silver. Crystallite or grain size was deduced as 5.52 nm for R-AgNPs and 35 nm for S-AgNPs. Zeta-potential indicated electrostatic negative charge for AgNPs, while FTIR revealed the presence of diverse functional groups. Disc diffusion assay indicated the broad-spectrum antibacterial potential of S-AgNPs with the maximum inhibition of B. subtilis while R-AgNPs revealed potency against P. aeruginosa at 10 µg/mL concentration. Biogenic AgNPs revealed antileishmanial activity and the IC50 was calculated as 164 µg/mL and 184 µg/mL for R-AgNPs and S-AgNPs respectively. Similarly, the R-AgNPs and S-AgNPs revealed anti-cancer potential against HepG2 and the IC50 was calculated as 49 µg/mL and 69 µg/mL for R-AgNPs and S-AgNPs, respectively. Moreover, the antioxidant activity showed significant results. MTT assay on RD cells, L20B cells, and Hep-2C indicated intensification in viability by reducing the concentration of R-AgNPs and S-AgNPs. The R-AgNPs and S-AgNPs inhibited sabin-like poliovirus (1TCID50 infection in RD cells). Furthermore, hemocompatibility at low concentrations has been confirmed. Hence, it is concluded that biogenic-AgNPs has the potential to be used in diverse biological applications and that the marine actinobacteria are an excellent resource for fabrication of AgNPs.
Assuntos
Actinobacteria , Nanopartículas Metálicas , Actinobacteria/genética , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Extratos Vegetais , RNA Ribossômico 16S/genética , Rhodococcus , Prata/farmacologiaRESUMO
ZnO nanoparticles (NPs) possess a wide range of biological functions in pharmaceutical and cosmetic applications due to their excellent antimicrobial, optical and UV protective properties. This study first reports the toxicological assessment of ZnO NPs green synthesized from Jatropha curcas shells for multifunctional biomedical applications. The hot water extract of J.curcas shells is utilized as a chelating agent for the reduction of zinc acetate and then, the prepared ZnO NPs are broadly characterized using X-ray spectroscopic and electron microscopic observations. The prepared ZnO NPs acquire high purity (100%) wurtzite crystal with hexagonal structure with the average particle size of 53â¯nm. In vitro and in vivo toxicity evaluation against human tumor cell lines and zebrafish embryos have ascertained the purpose of ZnO NPs in clinical research. Toxic effects of ZnO NPs were observed by a dose-dependent reduction of bacterial growth at ≥1â¯â¯â¯µgâ¯ml-1, by teratogenicity and genotoxicity in zebrafish embryos (from 3 to 90⯵gâ¯ml-1) and by a significant nanoparticle uptake (0.5â¯ng⯵l-1) by a fish serum. In contrast, ZnO NPs fail to reduce the proliferation of human bladder tumor cells (UC6) and cell viability of A549â¯cells in vitro up to 500⯵gâ¯ml-1. All these observations limit the unobstructed application of ZnO NPs at higher concentrations. Thus, abundantly used metal oxide nanoparticles like ZnO NPs examined in our present study in different animal models under in vitro and in vivo conditions will be the significant screening strategy to determine the nanotoxicity.
Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/toxicidade , Jatropha/química , Óxido de Zinco/química , Óxido de Zinco/toxicidade , Células A549 , Animais , Bactérias/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Química Verde , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Testes de Toxicidade , Peixe-Zebra/embriologiaRESUMO
Breast cancer, the second most prevalent cancer among women worldwide, necessitates the exploration of novel therapeutic approaches. To target the four subgroups of breast cancer "hormone receptor-positive and HER2-negative, hormone receptor-positive and HER2-positive, hormone receptor-negative and HER2-positive, and hormone receptor-negative and HER2-negative" it is crucial to inhibit specific targets such as EGFR, HER2, ER, NF-κB, and PR. In this study, we evaluated various methods for binary and multiclass classification. Among them, the GA-SVM-SVM:GA-SVM-SVM model was selected with an accuracy of 0.74, an F1-score of 0.73, and an AUC of 0.92 for virtual screening of ligands from the BindingDB database. This model successfully identified 4454, 803, 438, and 378 ligands with over 90% precision in both active/inactive and target prediction for the classes of EGFR+HER2, ER, NF-κB, and PR, respectively, from the BindingDB database. Based on to the selected ligands, we created a dendrogram that categorizes different ligands based on their targets. This dendrogram aims to facilitate the exploration of chemical space for various therapeutic targets. Ligands that surpassed a 90% threshold in the product of activity probability and correct target selection probability were chosen for further investigation using molecular docking. The binding energy range for these ligands against their respective targets was calculated to be between -15 and -5 kcal/mol. Finally, based on general and common rules in medicinal chemistry, we selected 2, 3, 3, and 8 new ligands with high priority for further studies in the EGFR+HER2, ER, NF-κB, and PR classes, respectively.
RESUMO
In this work, localized surface plasmon resonance (LSPR) sensing as applicable in the detection of Trenbolone acetate dopant is demonstrated. We show that the LSPR of the Trenbolone acetate/silver nanoparticle (Tren Ac/AgNPs) complex is sensitive to changes in the adsorbent concentration. The results show an average redshift of + 18 nm in the LSPR peak with variations in intensity and broadening behavior of the LSPR band of the Tren Ac/AgNPs complex. AgNPs were synthesized using laser ablation in liquid (LAL) technique with water as the solvent. UV-Vis spectroscopy was used for absorbance measurements and particle size and morphology were monitored using scanning electron microscopy (SEM). The aggregation behavior of the Tren Ac/AgNPs complex was monitored using energy-dispersive X-ray spectroscopy (EDS). Molecular Electrostatic Potential (MEP) and the HOMO-LUMO orbitals of the optimized Trenbolone acetate structure were obtained using Density Function Theory (DFT). The molecule was optimized at the B3LYP level of theory using the 6-311 basis set carried out using the Gaussian 09 software package. The results showed that O2- is Trenbolone acetate's active site that would interact with Ag+ to form a complex that would influence the plasmon behavior. The results presented in this work demonstrate the feasibility of LSPR for anabolic androgenic steroid detection.
RESUMO
Green synthesis aligns with the global demand for eco-friendly and sustainable technologies, reducing the dependency on harmful chemicals and high-energy processes typically used in conventional synthesis techniques. This study highlights a novel green synthesis route for nickel cobaltite nanoparticles (NiCO2O4 NPs) utilizing Hyphaene thebaica extract as a natural reducing and stabilizing agent. The synthesized NiCO2O4 NPs, with sizes ranging from 20 to 30 nm, exhibited uniform diamond-like structures as confirmed by SEM and TEM imaging. XRD analysis verified the polycrystalline nature of these nanoparticles, while EDS measurements confirmed the elemental composition of Ni and Co. The presence of functional groups was subsequently verified through FT-IR analysis, and Raman spectroscopy further confirmed phase formation. Electrochemical evaluations revealed significant pseudocapacitive behavior, showing a specific capacitance of 519 F/g, demonstrating their potential for high-performance supercapacitors. To further assess the applicability of the synthesized NiCO2O4 NPs, their photocatalytic activity against methylene blue (MB) dye was investigated, resulting in a 99% degradation rate. This impressive photocatalytic efficiency highlights their potential application in environmental remediation. Overall, this work underscores the significant potential of green synthesis methods in producing high-performance nanomaterials while simultaneously reducing environmental impact and promoting sustainable development.
RESUMO
Magnesium oxide nanoparticles (MgO NPs) represent an interesting inorganic material widely utilized across various fields including sensing, antimicrobial applications, optical coatings, water purification, fuel additives, absorbents, and catalysis, owing to their exceptional broad energy band gap, surface affinity, and strong chemical and thermal durability. In this investigation, MgO NPs were successfully synthesized through a green approach employing fruit extract from the gingerbread tree (Hyphaene thebaica). Analysis via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) confirmed their agglomerated quasi-spherical shape with a size range of 20-60 nm. The X-ray diffraction (XRD) pattern exhibited prominent peaks at planes (200) and (220), indicating the high crystallinity of MgO NPs with a crystallite size of 32.6 ± 5 nm while Energy-dispersive X-ray spectroscopy (EDS) analysis highlighted the composition comprises 40.47% Magnesium and 48.64% Oxygen by weight. Fourier transform infrared spectroscopy (FT-IR) revealed characteristic Mg-O bonds through peaks at 560 cm-1 and 866 cm-1, while Raman spectroscopy affirmed the cubic structure of MgO. Subsequently, the photocatalytic performance of MgO NPs under visible light irradiation was evaluated. Remarkably, the addition of 1 g/L of MgO nano-catalyst resulted in a degradation efficiency of 98% after 110 min on methylene blue dye, showcasing the high catalytic activity of MgO NPs. This remarkable photocatalytic efficiency emphasizes the potential of MgO NPs in environmental remediation.
RESUMO
Herein we described the biofabrication of samarium oxide nanoparticles (HT-Sm2O3 NPs) by applying the aqueous fruit extract of Hyphaene thebaica was utilized as an eco-friendly chelating agent. The prepared NPs were subjected to various physicochemical properties and potential in biomedical applications. X-ray Diffraction (XRD) pattern revealed sharp peaks that corroborated with the Joint Committee on Powder Diffraction Standards (JCPDS) card no. 00-042-1464. Crystallite size obtained from Debye-Scherrer approximation and Williamson-Hall (W-H) plot was 28.73 and 69.3 nm, respectively. Optical bandgap was calculated by employing Kubelka-Munk (K-M) function and was found to be ~4.58 eV. Raman shift was observed at 121, 351, 424-, and 561 cm-1. Photoluminescence (PL) spectra revealed two major peaks positioned at 360 and 540 nm. The high-resolution transmission electron microscopy (HR-TEM) analysis of HT-Sm2O3 nanoparticles (NPs) showed that they predominantly have spherical to cuboidal shapes. Additionally, the selected area electron diffraction (SAED) pattern presented spotty rings, indicating a high level of crystallinity in these NPs. The potential nanomedicine applications were studied using diverse bioassays using different treatments. The antioxidant activity demonstrated 45.71% ± 1.13% inhibition at 1000 µg/mL. Brine shrimp lethality assay revealed the highest cytotoxicity of 46.67% ± 3.33% at 1000 µg/mL and LC50 value of 1081 µg/mL. HT-Sm2O3 NPs exhibited inhibition of angiogenesis (20.41% ± 1.18%) at of 1000 µg/mL. MTT assay results indicated that HT-Sm2O3 NPs exhibit inhibitory effects on cell lines. Specifically, these NPs showed an IC50 value of 104.6 µg/mL against 3T3 cells. Against MCF-7 cells, the NPs demonstrated an IC50 value of 413.25 µg/mL. Additionally, in the inhibition of acetylcholinesterase (AChE), the newly synthesized NPs showed an IC50 value of 320 µg/mL. The antidiabetic assessment through α-glucosidase and α-amylase inhibition assays revealed, an IC50 value of 380 µg/mL for α-glucosidase and 952 µg/mL for α-amylase was calculated. Overall, our study suggested that the Sm2O3 NPs possess moderate anticancer, cholinesterase inhibition, and antidiabetic potential, however, needs further assessment. RESEARCH HIGHLIGHTS: In this work, nano-samaria is synthesized using an eco-friendly and green approach. The nanoparticles were characterized using techniques such as Raman, HR-TEM, FTIR, DRS, XRD, and so on, and the applications were studied using multiple in vitro bioassays for Diabetes, Alzheimer, and Cancer. The nano-samaria revealed good potential for potential biomedical applications.
RESUMO
Burning fossil fuels emits a significant amount of CO 2 , causing climate change concerns. CO 2 Capture and Storage (CCS) aims to reduce emissions, with fullerenes showing promise as CO 2 adsorbents. Recent research focuses on modifying fullerenes using an electric field. In light of this, we carried out DFT studies on some B, N, and P doped C 20 ( C 20 - n X n , n = 0, 1, 2, and 3; X = B, N, and P) in the absence and presence of an electric field in the range of 0-0.02 a.u.. The cohesive energy was calculated to ensure their thermodynamic stability showing, that despite having lesser cohesive energies than C 20 , they appear in a favorable range. Moreover, the charge distribution for all structures was depicted using the ESP map. Most importantly, we evaluated the adsorption energy, height, and CO 2 angle, demonstrating the B and N-doped fullerenes had the stronger interaction with CO 2 , which by far exceeded C 20 's, improving its physisorption to physicochemical adsorption. Although the adsorption energy of P-doped fullerenes was not as satisfactory, in most cases, increasing the electric field led to enhancing CO 2 adsorption and incorporating chemical attributes to CO 2 -fullerene interaction. The HOMO-LUMO plots were obtained by which we discovered that unlike the P-doped C 20 , the surprising activity of B and N-doped C 20 s against CO 2 originates from a high concentration of the HOMO-LUMO orbitals on B, N and neighboring atoms. In the present article, we attempt to introduce more effective fullerene-based materials for CO 2 adsorption as well as strategies to enhance their efficiency and revealing adsorption nature over B, N, and P-doped fullerenes and in the end, hope to encourage more experimental research on these materials within growing electric field for CO 2 capture in the future.
RESUMO
This study reports the effects of a computationally informed and avocado-seed mediated Phyto engineered CuS nanoparticles as fertilizing agent on the ionome and amino acid metabolome of Pinto bean seeds using both bench top and ion beam analytical techniques. Physico-chemical analysis of the Phyto engineered nanoparticles with scanning-electron microscopy, transmission electron microscopy, X-ray diffraction, and Fourier Transform Infrared Spectroscopy confirmed the presence of CuS nanoparticles. Molecular dynamics simulations to investigate the interaction of some active phytocompounds in avocado seeds that act as reducing agents with the nano-digenite further showed that 4-hydroxybenzoic acid had a higher affinity for interacting with the nanoparticle's surface than other active compounds. Seeds treated with the digenite nanoparticles exhibited a unique ionome distribution pattern as determined with external beam proton-induced X-ray emission, with hotspots of Cu and S appearing in the hilum and micropyle area that indicated a possible uptake mechanism via the seed coat. The nano-digenite also triggered a plant stress response by slightly altering seed amino acid metabolism. Ultimately, the nano-digenite may have important implications as a seed protective or nutritive agent as advised by its unique distribution pattern and effect on amino acid metabolism.
RESUMO
Cerium oxide nanoparticles possess unique properties that make them promising candidates in various fields, including cancer treatment. Among the proposed synthesis methods for CNPs, biosynthesis using natural extracts, offers an eco-friendly and convenient approach for producing CNPs, particularly for biomedical applications. In this study, a novel method of biosynthesis using the aqueous extract of Eucalyptus camaldulensis leaves was used to synthesize CNPs. Scanning electron microscopy and Transmission electron microscopy (TEM) techniques revealed that the synthesized CNPs exhibit a flower-like morphology. The particle size of CNPs obtained using Powder X-ray diffraction peaks and TEM as 13.43 and 39.25 nm. Energy-dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy confirmed the effect of biomolecules during the synthesis process and the formation of CNPs. The cytotoxicity of biosynthesized samples was evaluated using the MTT method demonstrating the potential of these samples to inhibit MCF-7 cancerous cells. The viability of the MCF-7 cell line conducted by live/dead imaging assay confirmed the MTT cytotoxicity method and indicated their potential to inhibit cancerous cells. Furthermore, the successful uptake of CNPs by MCF-7 cancer cells, as demonstrated by confocal microscopy, provides evidence that the intracellular pathway contributes to the anticancer activity of the CNPs. In general, results indicate that the biosynthesized CNPs exhibit significant cytotoxicity against the MCF-7 cancerous cell line, attributed to their high surface area.
Assuntos
Cério , Eucalyptus , Extratos Vegetais , Folhas de Planta , Humanos , Eucalyptus/química , Células MCF-7 , Folhas de Planta/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Cério/química , Cério/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Feminino , Nanopartículas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antineoplásicos/farmacologia , Antineoplásicos/química , Tamanho da PartículaRESUMO
This study focuses on computational studies of chemical reactivity descriptors of some proposed drugs for COVID-19. Density functional theory calculations were used to optimize the structure and investigate the frontier orbitals and the chemical reactivity descriptors of these drugs. The frontier orbitals, which include both the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), play an essential role in molecular interactions and chemical reactivity of molecule. Polarizability, which determines the response of the susceptibility of a molecule to an approaching charge, is higher in the more complex drugs such as Hydroxychloroquine, Remdesivir, and Ivermectin compare to the smaller drugs. The HOMO and LUMO orbital energies were calculated to obtain the energy gap of the studied drugs, which is in the following order: Favipiravir < Hydroxychloroquine, Remdesivir < Ivermectin < Artesunate < Artemether < Artemisinin. Generally, molecules with a larger energy gap have lower chemical reactivity and higher kinetic stability.
RESUMO
Nanoparticles produced from various metal elements including copper have been used in the treatment of infectious diseases in response to antibiotic failure due to microbial resistance. Copper is recommended for use in the production of nanoparticles largely because of its accessibility and affordability. This study aimed to synthesise copper oxide nanoparticles (CuO-NPs) using leaf extracts of Athrixia phylicoides and assess their antibacterial, antioxidant and cytotoxicity properties. The characterization of the obtained NPs was done through X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and Energy-dispersive spectroscopy (EDS). Our results showed that the NPs had a highly crystalline, quasi-spherical shape with an average diameter of 42 nm. Also, gram-positive bacteria Bacillus cereus and Staphylococcus aureus were the most susceptible to CuO-NPs with MIC values of 0.62 mg/mL and 0.16 mg/mL, respectively, as shown by the broth microdilution method. In addition, CuO-NPs demonstrated strong radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) inhibitory activity with an IC50 value of 10.68 ± 0.03 µg/mL. However, the cytotoxicity activity determined by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) (MTT) assay revealed that the CuO-NPs were not toxic to human embryonic kidney cells (HEK 293 cells) at an LC50 value of 66.08 ± 0.55 µg/mL. The synthesised CuO-NPs showed high antibacterial, and antioxidant potency and less toxicity. Therefore, they could be a feasible alternative source of therapeutic agents in treating bacterial and oxidative stress-induced diseases.
RESUMO
Hyphaene thebaica fruits were used for the fabrication of spherical erbium oxide nanoparticles (HT-Er2O3 NPS) using a one-step simple bioreduction process. XRD pattern revealed a highly crystalline and pure phase with crystallite size of ~ 7.5 nm, whereas, the W-H plot revealed crystallite size of 11 nm. FTIR spectra revealed characteristic Er-O atomic vibrations in the fingerprint region. Bandgap was obtained as 5.25 eV using K-M function. The physicochemical and morphological nature was established using Raman spectroscopy, reflectance spectroscopy, SAED and HR-TEM. HT-Er2O3 NPS were further evaluated for antidiabetic potential in mice using in-vivo and in-vitro bioassays. The synthesized HT-Er2O3 NPS were screened for in vitro anti-diabetic potentials against α-glucosidase enzyme and α-amylase enzyme and their antioxidant potential was evaluated using DPPH free radical assay. A dose dependent inhibition was obtained against α-glucosidase (IC50 12 µg/mL) and α-amylase (IC50 78 µg/mL) while good DPPH free radical scavenging potential (IC50 78 µg mL-1) is reported. At 1000 µg/mL, the HT-Er2O3 NPS revealed 90.30% and 92.30% inhibition of α-amylase and α-glucosidase enzymes. HT-Er2O3 NPs treated groups were observed to have better glycemic control in diabetic animals (503.66 ± 5.92*** on day 0 and 185.66 ± 2.60*** on day 21) when compared with positive control glibenclamide treated group. Further, HT-Er2O3 NPS therapy for 21 days caused a considerable effect on serum total lipids, cholesterol, triglycerides, HDL and LDL as compared to untreated diabetic group. In conclusion, our preliminary findings on HT-Er2O3 NPS revealed considerable antidiabetic potential and thus can be an effective candidate for controlling the post-prandial hyperglycemia. However, further studies are encouraged especially taking into consideration the toxicity aspects of the nanomaterial.
RESUMO
The endless development in nanotechnology has introduced new vitality in device fabrication including biosensor design for biomedical applications. With outstanding features like suitable biocompatibility, good electrical and thermal conductivity, wide surface area and catalytic activity, nanomaterials have been considered excellent and promising immobilisation candidates for the development of high-impact biosensors after they emerged. Owing to these reasons, the present review deals with the efficient use of nanomaterials as immobilisation candidates for biosensor fabrication. These include the implementation of carbon nanomaterials-graphene and its derivatives, carbon nanotubes, carbon nanoparticles, carbon nanodots-and MXenes, likewise their synergistic impact when merged with metal oxide nanomaterials. Furthermore, we also discuss the origin of the synthesis of some nanomaterials, the challenges associated with the use of those nanomaterials and the chemistry behind their incorporation with other materials for biosensor design. The last section covers the prospects for the development and application of the highlighted nanomaterials.
Assuntos
Técnicas Biossensoriais , Grafite , Nanoestruturas , Nanotubos de Carbono , NanotecnologiaRESUMO
In recent times, the need to make water safer and cleaner through the elimination of recalcitrant pharmaceutical residues has been the aim of many studies. Fluoroquinolone antibiotics such as ciprofloxacin, norfloxacin, enrofloxacin, and levofloxacin are among the commonly detected pharmaceuticals in wastewater. Since the presence of these pharmaceuticals in water bodies poses serious risks to living organisms, it is vital to adopt effective wastewater treatment techniques for their complete removal. Electrochemical technologies such as photoelectrocatalysis, electro-Fenton, electrocoagulation, and electrochemical oxidation have been established as techniques capable of the complete removal of organics including pharmaceuticals from wastewater. Hence, this review presents discussions on the recent progress (literature within 2018-2022) in the applications of common electrochemical processes for the degradation of fluoroquinolone antibiotics from wastewater. The fundamentals of these processes are highlighted while the results obtained using the processes are critically discussed. Furthermore, the inherent advantages and limitations of these processes in the mineralization of fluoroquinolone antibiotics are clearly emphasized. Additionally, appropriate recommendations are made toward improving electrochemical technologies for the complete removal of these pharmaceuticals with minimal energy consumption. Therefore, this review will serve as a bedrock for future researchers concerned with wastewater treatments to make informed decisions in the selection of suitable electrochemical techniques for the removal of pharmaceuticals from wastewater.
Assuntos
Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Fluoroquinolonas , Oxirredução , Água , Purificação da Água/métodos , Antibacterianos , Preparações Farmacêuticas , Poluentes Químicos da Água/análise , Peróxido de Hidrogênio/químicaRESUMO
This research describes the use of surface-enhanced Raman spectroscopy (SERS) substrates based on colloidal silver nanoparticles (AgNPs) produced by laser ablation of silver granules in pure water that are inexpensive, easy to make, and chemically stable. Here, the effects of the laser power, pulse repetition frequency, and ablation duration on the Surface Plasmon Resonance peak of AgNPs solutions, were used to determine the optimal parameters. Also, the effects of the laser ablation time on both ablation efficiency and SERS enhancement were studied. The synthesized AgNPs were characterized by UV-Vis spectrophotometer, Scanning Electron Microscope (SEM), and Raman spectrometer. The Surface Plasmon Resonance peak of AgNP solutions was centered at 404 nm confirming their synthesis and they were noted to be spherical with 34 nm in diameter. Using Raman spectroscopy, they had main bands centered at 196 cm-1 (O = Ag2/Ag-N stretching vibrations), 568 cm-1 (NH out of plane bending); 824 cm-1 (symmetric deformation of the NO2); 1060 cm-1 (NH out of plane bending); 1312 cm-1 (symmetric stretching of NO2); 1538 cm-1 (NH in-plane bending); and 2350 cm-1 (N2 vibrations). Their Raman spectral profiles remained constant within the first few days of storage at room temperature implying chemical stability. The Raman signals from blood were enhanced when mixed with AgNPs and this depended on colloidal AgNPs concentration. Using those generated by 12 h ablation time, an enhancement of 14.95 was achieved. Additionally, these substrates had an insignificant impact on the Raman profiles of samples of rat blood when mixed with them. The Raman peaks noted were attributed to CC stretching of glucose (932 cm-1); CC stretching of Tryptophan (1064 cm-1); CC stretching of ß Carotene (1190 cm-1); CH2 wagging of proteins (1338 and 1410 cm-1); carbonyl stretch for proteins (1650 cm-1); CN vibrations for glycoproteins (2122 cm-1). These SERS substrates can be applied to areas such as forensics to distinguish between human and other animal blood, monitoring of the efficacy of drugs, disease diagnostics such as diabetes, and pathogen detection. All this can be achieved by comparing the Raman spectra of the biological samples mixed with the synthesized SERS substrates for different samples. Thus, the results on the use of inexpensive, simple-to-prepare Raman substrates have the possibility of making surface-enhanced Raman spectroscopy available to laboratories with scarce resources in developing nations.