Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Clin Oral Investig ; 27(7): 3895-3905, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37041271

RESUMO

OBJECTIVES: The present study aimed to analyze the behaviors of three intraoral scanners (IOSs): evaluating the interdistance and axial inclination discrepancies in full-arch scans, predictable errors were searched. MATERIALS AND METHODS: Six edentulous sample models with variable numbers of dental implants were used; reference data were obtained with a coordinate-measuring machine (CMM). Each IOS (i.e., Primescan, CS3600, and Trios3) performed 10 scans per model (180 total scans). The origin of each scan body was used as a reference point to measure interdistance lengths and axial inclinations. Precision and trueness of interdistance measurements and axial inclinations were evaluated to address error predictability. Bland-Altman analysis, followed by linear regression analysis and Friedman's test (plus Dunn's post hoc correction), was performed to evaluate the precision and trueness. RESULTS: Regarding interdistance, Primescan showed the best precision (mean ± SD: 0.047 ± 0.020 mm), while Trios3 underestimated the reference value more than the others (p < 0.001) and had the worst performance (mean ± SD: -0.079 ± 0.048 mm). Concerning the inclination angle, Primescan and Trios3 tended to overestimate angle values, while CS3600 underestimated them. Primescan had fewer inclination angle outliers, but it tended to add 0.4-0.6° to the measurements. CONCLUSIONS: IOSs showed predictable errors: they tended to overestimate or underestimate linear measurements and axial inclinations of scan bodies, one added 0.4-0.6° to the angle inclination values. In particular, they showed heteroscedasticity, a behavior probably related to the software or the device itself. CLINICAL SIGNIFICANCE: IOSs showed predictable errors that could affect clinical success. When performing a scan or choosing a scanner, clinicians should clearly know their behaviors.


Assuntos
Implantes Dentários , Imageamento Tridimensional , Técnica de Moldagem Odontológica , Modelos Dentários , Desenho Assistido por Computador
2.
Eur J Dent Educ ; 25(3): 621-633, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33269536

RESUMO

INTRODUCTION: The outbreak and diffusion of the novel SARS-CoV2 coronavirus have caused an emergency status in the dental education system. MATERIALS AND METHODS: An anonymous survey composed of 34 questions was delivered to students of the Master Degree Programme in Dentistry and Dental Prosthodontics of the Universities of Emilia-Romagna, the fifth Italian region most affected by the pandemic. The psychological impact of COVID-19 was assessed by means of the Generalised Anxiety Disorder-7 scale (GAD-7). Numerically recoded data were analysed using the Analysis of Variance (ANOVA), whilst to investigate the association between quantitative variables, the Pearson correlation coefficient (R) was computed. RESULTS: The questionnaire was completed by 399 students (75%) out of 532. Most students experienced difficulties in working at the thesis during the COVID-19 emergency. For over half of them, online teaching could only partially replace traditional face-to-face lessons. The negative impact on the study career was judged as particularly high by sixth-year students. Clinical training activities were considered as exposing to the risk of contracting COVID-19 infection by the majority of the students. The level of concern of contracting COVID-19 infections during future university activities was positively correlated to risk perception related to clinical training. CONCLUSION: The results of this survey could be used to train students to a correct risk assessment. Students reported experiencing concern whilst thinking of COVID-19 and 6.5% of them showed symptoms related to high levels of anxiety. These data may guide Universities in trying to reduce students' anxiety by means of correct communication strategies.


Assuntos
COVID-19 , Pandemias , Estudos Transversais , Educação em Odontologia , Humanos , Itália/epidemiologia , RNA Viral , SARS-CoV-2 , Estudantes
3.
J Mater Sci Mater Med ; 30(4): 43, 2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30929122

RESUMO

Robust cell adhesion is known to be necessary to promote cell colonization of biomaterials and differentiation of progenitors. In this paper, we propose the functionalization of Silicon Oxycarbide (SiOxCy) nanowires (NWs) with 3-mercaptopropyltrimethoxysilane (MPTMS), a molecule containing a terminal -SH group. The aim of this functionalization was to develop a surface capable to adsorb proteins and promote cell adhesion, proliferation and a better deposition of extracellular matrix. This functionalization can be used to anchor other structures such as nanoparticles, proteins or aptamers. It was observed that surface functionalization markedly affected the pattern of protein adsorption, as well as the in vitro proliferation of murine osteoblastic cells MC3T3-E1, which was increased on functionalized nanowires (MPTMS-NWs) compared to bare NWs (control) (p < 0.0001) after 48 h. The cells showed a better adhesion on MPTMS-NWs than on bare NWs, as confirmed by immunofluorescence studies on the cytoskeleton, which showed a more homogeneous vinculin distribution. Gene expression analysis showed higher expression levels for alkaline phosphatase and collagen I, putative markers of the osteoblast initial differentiation stage. These results suggest that functionalization of SiOxCy nanowires with MPTMS enhances cell growth and the expression of an osteoblastic phenotype, providing a promising strategy to improve the biocompatibility of SiOxCy nanowires for biomedical applications.


Assuntos
Adesão Celular/efeitos dos fármacos , Nanofios/química , Osteoblastos/efeitos dos fármacos , Compostos de Silício/farmacologia , Compostos de Sulfidrila/farmacologia , Alicerces Teciduais/química , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Teste de Materiais , Camundongos , Nanofios/efeitos adversos , Compostos de Organossilício , Osteoblastos/citologia , Osteoblastos/fisiologia , Osteogênese/efeitos dos fármacos , Espectroscopia Fotoeletrônica , Silanos/química , Silanos/farmacologia , Compostos de Silício/química , Compostos de Sulfidrila/química , Propriedades de Superfície , Alicerces Teciduais/efeitos adversos
4.
J Negat Results Biomed ; 14: 2, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25586743

RESUMO

BACKGROUND: Osteochondral defects significantly affect patients' quality of life and represent challenging tissue lesions, because of the poor regenerative capacity of cartilage. Tissue engineering has long sought to promote cartilage repair, by employing artificial scaffolds to enhance cell capacity to deposit new cartilage. An ideal biomaterial should closely mimic the natural environment of the tissue, to promote scaffold colonization, cell differentiation and the maintenance of a differentiated cellular phenotype. The present study evaluated chitosan scaffolds enriched with D-(+) raffinose in osteochondral defects in rabbits. Cartilage defects were created in distal femurs, both on the condyle and on the trochlea, and were left untreated or received a chitosan scaffold. The animals were sacrificed after 2 or 4 weeks, and samples were analysed microscopically. RESULTS: The retrieved implants were surrounded by a fibrous capsule and contained a noticeable inflammatory infiltrate. No hyaline cartilage was formed in the defects. Although defect closure reached approximately 100% in the control group after 4 weeks, defects did not completely heal when filled with chitosan. In these samples, the lesion contained granulation tissue at 2 weeks, which was then replaced by fibrous connective tissue by week 4. Noteworthy, chitosan never appeared to be integrated in the surrounding cartilage. CONCLUSIONS: In conclusion, the present study highlights the limits of D-(+) raffinose-enriched chitosan for cartilage regeneration and offers useful information for further development of this material for tissue repair.


Assuntos
Cartilagem Articular/patologia , Cartilagem Articular/cirurgia , Quitosana/administração & dosagem , Rafinose/administração & dosagem , Alicerces Teciduais , Animais , Doenças das Cartilagens/patologia , Doenças das Cartilagens/cirurgia , Quitosana/química , Masculino , Coelhos , Rafinose/química , Alicerces Teciduais/química
6.
Clin Oral Implants Res ; 25(2): e133-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23210635

RESUMO

OBJECTIVES: Phosphoserine-based functionalization has been proposed as a tool to improve integration of endosseous implants by promoting osteoblast adhesion and differentiation in vitro. The present work investigates whether phosphoserine-tethered poly(epsilon-lysine) dendrons, when applied as a film to titanium surfaces, enhance the differentiation of osteoblastic cells and the activation of Wnt/ß-catenin signaling. MATERIALS AND METHODS: These films were tested in a murine model of calvaria-derived MC3T3 osteoblastic cells, primary bone marrow cells and mesenchymal, undifferentiated C2C12 cells. Gene expression was assayed by Real Time PCR, and activation of Wnt signaling pathway was measured with a reporter assay. RESULTS: Dendrons increased expression of alkaline phosphatase and osteocalcin, two osteoblastic markers, in both murine osteoblastic MC3T3 cells and primary bone marrow cells. The expression of osteoprotegerin, a protein opposing osteoclastogenesis was also significantly higher in cells growing on dendron-coated substrates both at 3 and 6 days of culture. Similarly, the mRNA levels of Wisp-2 and of ß-catenin, two Wnt target genes, were also markedly increased in this group at day 6. The activation of this signaling pathway in cells growing on the dendron-coated surfaces was confirmed by use of a TCF/ß-catenin reporter system in the C2C12 cell line. CONCLUSIONS: The findings of the present study show that phosphoserine-tethered poly(epsilon-lysine) dendron films act as stimuli for the activation of specific signal cascades and promote the differentiation of adhering progenitor cells into an osteoblastic phenotype.


Assuntos
Biomimética , Materiais Revestidos Biocompatíveis , Dendrímeros/farmacologia , Lisina/farmacologia , Osteoblastos/fisiologia , Fosfosserina/farmacologia , Titânio/farmacologia , Via de Sinalização Wnt/fisiologia , Condicionamento Ácido do Dente , Fosfatase Alcalina/metabolismo , Animais , Biomarcadores/metabolismo , Adesão Celular , Diferenciação Celular , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Camundongos , Microscopia Eletrônica de Varredura , Osteocalcina/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia , Propriedades de Superfície
7.
Dent Res J (Isfahan) ; 21: 15, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476714

RESUMO

The purpose of this systematic review was to evaluate whether there are scientific evidence regarding the association between periodontitis and obstructive sleep apnea (OSA) in adults. An electronic search was performed on MEDLINE/PubMed for prospective and retrospective longitudinal studies, cohort studies, and case-control studies conducted in human adults affected by both OSA and periodontitis. Two reviewers extracted the data using a custom Excel spreadsheet. A methodological assessment of the quality of the studies was performed using the Newcastle-Ottawa Scale. Fourteen studies were included. All studies evaluated the association between periodontitis and OSA. None of the studies evaluated the cause-effect relationship. Eleven studies found a significant positive relationship between periodontitis and OSA, whereas three found no statistically significant association. Several study limitations were observed, such as lack of standardization of study groups, diagnosis of periodontitis and OSA, and differences in study design. Evidence of a plausible association between periodontitis and OSA was found. The possible relationship could be explained by systemic inflammation, oral breathing, and the comorbid relationship attributable to common risk factors. Observational and randomized controlled studies are needed to clarify the mechanism of interaction between the two conditions.

8.
Int Dent J ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38614878

RESUMO

OBJECTIVES: The purpose of this work was to optimise printable polycaprolactone (PCL)/ß-tricalcium phosphate (ß-TCP) biomaterials with high percentages of ß-TCP endowed with balanced mechanical characteristics to resemble human cancellous bone, presumably improving osteogenesis. METHODS: PCL/ß-TCP scaffolds were obtained from customised filaments for fused deposition modelling (FDM) 3D printing with increasing amounts of ß-TCP. Samples mechanical features, surface topography and wettability were evaluated as well as cytocompatibility assays, cell adhesion and differentiation. RESULTS: The parameters of the newly fabricated materila were optimal for PCL/ß-TCP scaffold fabrication. Composite surfaces showed higher hydrophilicity compared with the controls, and their surface roughness sharply was higher, possibly due to the presence of ß-TCP. The Young's modulus of the composites was significantly higher than that of pristine PCL, indicating that the intrinsic strength of ß-TCP is beneficial for enhancing the elastic modulus of the composite biomaterials. All novel composite biomaterials supported greater cellular growth and stronger osteoblastic differentiation compared with the PCL control. CONCLUSIONS: This project highlights the possibility to fabricat, through an FDM solvent-free approach, PCL/ß-TCP scaffolds of up to 70 % concentrations of ß-TCP. overcoming the current lmit of 60 % stated in the literature. The combination of 3D printing and customised biomaterials allowed production of highly personalised scaffolds with optimal mechanical and biological features resembling the natural structure and the composition of bone. This underlines the promise of such structures for innovative approaches for bone and periodontal regeneration.

9.
J Negat Results Biomed ; 12: 12, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23964727

RESUMO

As recent studies highlight the importance of alternative mechanisms in the control of bone turnover, new therapeutic approaches can be envisaged for bone diseases and periodontitis-induced bone loss. Recently, it has been shown that Fluoxetine and Venlafaxine, serotonin re-uptake inhibitors commonly used as antidepressants, can positively or negatively affect bone loss in rat models of induced periodontitis. Serotonin is a neurotransmitter that can be found within specific nuclei of the central nervous system, but can also be produced in the gut and be sequestered inside platelet granules. Although it is known to be mainly involved in the control of mood, sleep, and intestinal physiology, recent evidence has pointed at far reaching effects on bone metabolism, as a mediator of the effects of Lrp5, a membrane receptor commonly associated with Wnt canonical signaling and osteoblast differentiation. Deletion of Lrp5 in mice lead to increased expression of Tryptophan Hydroxylase 1, the gut isoform of the enzyme required for serotonin synthesis, thus increasing serum levels of serotonin. Serotonin, in turn, could bind to HTR1B receptors on osteoblasts and stop their proliferation by activating PKA and CREB.Although different groups have reported controversial results on the existence of an Lrp5-serotonin axis and the action of serotonin in bone remodeling, there is convincing evidence that serotonin modulators such as SSRIs can affect bone turnover. Consequently, the effects of this drug family on periodontal physiology should be thoroughly explored.


Assuntos
Processo Alveolar/anatomia & histologia , Processo Alveolar/metabolismo , Serotonina/metabolismo , Animais , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Modelos Biológicos , Tamanho do Órgão , Ratos , Via de Sinalização Wnt
10.
Front Bioeng Biotechnol ; 11: 1199651, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37265990

RESUMO

Introduction: Aptamers are a brand-new class of receptors that can be exploited to improve the bioactivity of tissue engineering grafts. The aim of this work was to revise the current literature on in vitro and in vivo studies in order to i) identify current strategies adopted to improve scaffold bioactivity by aptamers; ii) assess effects of aptamer functionalization on cell behavior and iii) on tissue regeneration. Methods: Using a systematic search approach original research articles published up to 30 April 2022, were considered and screened. Results: In total, 131 records were identified and 18 were included in the final analysis. Included studies showed that aptamers can improve the bioactivity of biomaterials by specific adsorption of adhesive molecules or growth factors from the surrounding environment, or by capturing specific cell types. All the studies showed that aptamers ameliorate scaffold colonization by cells without modifying the physicochemical characteristics of the bare scaffold. Additionally, aptamers seem to promote the early stages of tissue healing and to promote anatomical and functional regeneration. Discussion: Although a metanalysis could not be performed due to the limited number of studies, we believe these findings provide solid evidence supporting the use of aptamers as a suitable modification to improve the bioactivity of tissue engineering constructs.

11.
J Dent Sci ; 18(4): 1630-1637, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37799917

RESUMO

Background/purpose: Testing of dental materials when in contact with innate immune cells has been so far hindered by the lack of proper in vitro models. Human primary monocyte-derived macrophages (MDMs) would be an excellent option to this aim. However, the inability to detach them from the tissue culture plates contrast the possibility to culture them on biomaterials. The goal of the present work is to present and validate an innovative protocol to obtain MDMs from peripheral blood monocytes, and to reseed them in contact with biomaterials without altering their viability and phenotype. Materials and methods: We differentiated MDMs on ultra-low attachment tissue culture plastics and recovered them with specific detachment solution in order to be reseeded on a secondary substrate. Therefore, using biological assays (RT-PCR, Western blot, and immunofluorescence) we compared their phenotype to MDMs differentiated on standard culture plates. Results: Transferred MDMs keep their differentiated M0 resting state, as well as the ability to be polarized into M1 (pro-inflammatory) or M2 (anti-inflammatory) macrophages. Conclusion: These data provide the dental material research community the unprecedented possibility to investigate the immunomodulatory properties of biomaterials for dental application.

12.
Dent J (Basel) ; 11(6)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37366675

RESUMO

BACKGROUND: New technologies can facilitate the transition from pre-clinical to clinical settings. We investigate students' satisfaction with a novel learning method adopted in access cavity exercises. METHODS: Students performed their access cavity on inexpensive, in-house 3D printed teeth. Their performances were evaluated by scanning the prepared teeth with an intraoral scanner and visualized using a mesh processing software. Then, the same software was used to align the tooth prepared by the student and the teacher's one for self-assessment purposes. Students were asked to answer a questionnaire about their experiences with this new learning method. RESULTS: From the teacher's perspective, this novel learning approach was easy, straightforward and affordable. Overall, student feedback was positive: 73% found that access cavity assessment by scanning was more useful compared to a visual inspection under magnification and 57% reported that they had a better understanding of errors and mishaps. On the other hand, students pointed out that the material used to print teeth was too soft. CONCLUSION: The use of in-house 3D printed teeth in pre-clinical training is a simple way to overcome some of the drawbacks associated with extracted teeth, such as limited availability, variability, cross-infection control, and ethical constraints. The use of intraoral scanners and mesh processing software could improve student self-assessment.

13.
Biomimetics (Basel) ; 8(8)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38132522

RESUMO

BACKGROUND: Scaffold (SCA) functionalization with aptamers (APT) provides adsorption of specific bioactive molecules on biomaterial surfaces. The aim of this study was to observe if SCA enriched with anti-fibronectin APT can favor coagulum (PhC) and osteoblasts (OSB) differentiation. METHODS: 20 µg of APT was functionalized on SCA by simple adsorption. For PhC formation, SCAs were inserted into rat calvaria defects for 17 h. Following proper transportation (buffer solution PB), OSBs (UMR-106 lineage) were seeded over PhC + SCAs with and without APT. Cells and PhC morphology, PhC cell population, protein labeling and gene expression were observed in different time points. RESULTS: The APT induced higher alkaline phosphatase and bone sialoprotein immunolabeling in OSB. Mesenchymal stem cells, leukocytes and lymphocytes cells were detected more in the APT group than when scaffolds were not functionalized. Additionally, an enriched and dense fibrin network and different cell types were observed, with more OSB and white blood cells in PhC formed on SCA with APT. The gene expression showed higher transforming growth factor beta 1 (TGF-b1) detection in SCA with APT. CONCLUSIONS: The SCA functionalization with fibronectin aptamers may alter key morphological and functional features of blood clot formation, and provides a selective expression of proteins related to osteo differentiation. Additionally, aptamers increase TGF-b1 gene expression, which is highly associated with improvements in regenerative therapies.

14.
Am J Orthod Dentofacial Orthop ; 141(6): 705-14, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22640672

RESUMO

INTRODUCTION: Mini-implants are used to improve orthodontic anchorage, but optimal composition and surface characteristics have yet to be determined. We investigated the behavior of osteoblast-like cells on grade 4 commercially pure titanium and grade 5 titanium alloy with different surface treatments for mini-implants. METHODS: MC3T3 cells were plated on machined, acid-etched, or acid-etched grade 4 titanium enriched with calcium phosphate, or machined, anodized, or anodized and calcium phosphate-enriched grade 5 titanium disks. Surface and cell morphologies were assessed by scanning electron microscopy. Cell viability was measured by chemiluminescence, cytoskeletal organization was investigated by immunofluorescence, and real-time polymerase chain reaction for osteoblast-specific genes was performed to measure cell differentiation. RESULTS: Flattened shapes and strong stress fibers were observed on the machined surfaces; cells on the rough surfaces had a spindle shape, with lower cytoskeletal polarization. Cell proliferation was highest on smooth grade 4 titanium surfaces, whereas cells quickly reached a plateau on rough grade 4 titanium; no difference was observed after 72 hours in the grade 5 titanium groups. Calcium phosphate enrichment on grade 4 titanium significantly increased the messenger RNA levels for alkaline phosphatase and osteocalcin. Osteoblastic markers were higher on the grade 5 titanium machined surfaces than on the rough surfaces, and comparable with acid-etched grade 4 titanium. CONCLUSIONS: Although the grade 4 titanium enriched with calcium phosphate had the highest level of differentiation in vitro, the grade 5 titanium machined surfaces supported cell proliferation and matrix synthesis, and induced high expression of early differentiation markers. Increased mechanical resistance of grade 5 titanium makes it a potential candidate for orthodontic mini-implants.


Assuntos
Ligas Dentárias , Procedimentos de Ancoragem Ortodôntica/instrumentação , Osteoblastos/efeitos dos fármacos , Titânio , Células 3T3 , Condicionamento Ácido do Dente , Fosfatase Alcalina/metabolismo , Animais , Fosfatos de Cálcio , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Ligas Dentárias/farmacologia , Implantes Dentários , Análise do Estresse Dentário , Medições Luminescentes , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteocalcina/biossíntese , Osteoprotegerina/biossíntese , Propriedades de Superfície , Titânio/farmacologia
15.
J Clin Med ; 11(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36498763

RESUMO

The aim of our study was to investigate how endodontics is taught in Italian universities. An online survey was conducted from August to December 2021. A comparison between courses led by full or associate professors (Group 1) versus courses led by other figures, such as researchers or temporary lecturers (Group 2), was made. A total of 28 out of 36 schools participated (78%). In most schools, endodontics is taught in the fifth year to 15-29 students. All schools planned pre-clinical endodontic training, and in 25/28 schools (89.3%), clinical endodontic training was also provided. The course programs varied among schools, and significantly more hours were allocated to teaching nonsurgical root canal treatment in Group 1 schools than in Group 2 schools. The average numbers of hours of preclinical and clinical training were 34.3 ± 23.6 and 84.1 ± 76.7, respectively. All schools used rotary NiTi files in their clinical training, and the vertical condensation of hot gutta-percha was the most frequently taught obturation technique. As expected, the scenario of endodontic education in Italian universities was variable and needs harmonization. Courses led by full or associate professors seem to be better structured.

16.
Nanomaterials (Basel) ; 12(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35808143

RESUMO

Amorphous silica nanoparticles (ASNP) are present in a variety of products and their biological effects are actively investigated. Although several studies have documented pro-inflammatory effects of ASNP, the possibility that they also modify the response of innate immunity cells to natural activators has not been thoroughly investigated. Here, we study the effects of pyrogenic ASNP on the LPS-dependent activation of human macrophages differentiated from peripheral blood monocytes. In macrophages, 24 h of pre-exposure to non-cytotoxic doses of ASNP markedly inhibited the LPS-dependent induction of pro-inflammatory (TNFα, IL-6) and anti-inflammatory cytokines (IL-10). The inhibitory effect was associated with the suppression of NFκB activation and the increased intracellular sequestration of the TLR4 receptor. The late induction of glutamine synthetase (GS) by LPS was also prevented by pre-exposure to ASNP, while GS silencing did not interfere with cytokine secretion. It is concluded that (i) macrophages exposed to ASNP are less sensitive to LPS-dependent activation and (ii) GS induction by LPS is likely secondary to the stimulation of cytokine secretion. The observed interference with LPS effects may point to a dampening of the acute inflammatory response after exposure to ASNP in humans.

17.
PLoS One ; 17(8): e0272486, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35917303

RESUMO

The study of the intimate connection occurring at the interface between cells and titanium implant surfaces is a major challenge for dental materials scientists. Indeed, several imaging techniques have been developed and optimized in the last decades, but an optimal method has not been described yet. The combination of the scanning electron microscopy (SEM) with a focused ion beam (FIB), represents a pioneering and interesting tool to allow the investigation of the relationship occurring at the interface between cells and biomaterials, including titanium. However, major caveats concerning the nature of the biological structures, which are not conductive materials, and the physico-chemical properties of titanium (i.e. color, surface topography), require a fine and accurate preparation of the sample before its imaging. Hence, the aim of the present work is to provide a suitable protocol for cell-titanium sample preparation before imaging by SEM-FIB. The concepts presented in this paper are also transferrable to other fields of biomaterials research.


Assuntos
Materiais Biocompatíveis , Titânio , Materiais Biocompatíveis/química , Adesão Celular , Microscopia Eletrônica de Varredura , Próteses e Implantes , Propriedades de Superfície , Titânio/química
18.
Biomolecules ; 12(8)2022 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-36009053

RESUMO

The aim of this study was to investigate the effects of the androgenic hormone testosterone enanthate (TE) on human MG-63 cells. MG-63 were cultured for 24 h in the presence of TE at increasing concentrations to assess its lethal dose. Therefore, the suitable concentration for a prolonged use of TE in vitro was assessed by viability assay over 9 days. Finally, MG-63 were exposed to TE for 14 days and assayed for differentiation by qPCR and Alizarin Red S staining. TE in the amount of 100 µM resulted as the maximum dose tolerated by MG-63 cells after 24 h. However, a prolonged exposure in culture TE in the amount of 100 µM showed a cytostatic effect on cell proliferation. On the contrary, TE 10 µM was tolerated by the cells and did not boost cell proliferation, but did enhance new bone formation, as revealed by COL1A1, ALPL, BGLAP, and IBSP gene expression after 3, 7, and 14 days, and calcium deposition by Alizarin Red S staining after 14 days. Based on the current study, 10 µM is the critical dose of TE that should be used in vitro to support bone differentiation of MG-63 cells.


Assuntos
Testosterona , Diferenciação Celular , Humanos , Testosterona/análogos & derivados , Testosterona/farmacologia
19.
Mater Sci Eng C Mater Biol Appl ; 121: 111772, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33579438

RESUMO

Nanomaterials play a pivotal role in modern regenerative medicine and tissue engineering, due to their peculiar physical, optical and biological properties once they are used in the nanometric size. Many evidences are showing the importance of biomaterial micro- and nano-topography on cellular adhesion, proliferation and differentiation, and hence, tissue regeneration. It is well known that nanowires (NWs) can mimic many different tissues as a result of their shape and their surface characteristics, and that surface hydrophilicity affects early protein adsorption and cellular adhesion. Therefore a material able to induce bone regeneration might be obtained by combining optimal surface topography and hydrophilicity. Based on these evidence, we designed silicon carbide (SiC) and core/shell silicon carbide/silicon dioxide (SiC/SiOx) nanowires with modified wettability in order to analyze cell behavior, using an in-vitro osteoblastic model. First, we synthetized SiC NWs and SiC/SiOx NWs through a chemical-vapour-deposition (CVD) process, and then we used hydrogen plasma to modify their hydrophilicity. Subsequently we evaluated the four types of NWs in terms of their morphology and contact angle, and we studied their behavior in the presence of MC3T3-E1 murine osteoblasts. Cell metabolic activity, viability, morphology and focal adhesions formation were considered. Morphological data showed different dimensions between SiC and SiC/SiOx NWs. SiC NWs before the hydrogen plasma treatment showed a very low contact angle, that was absent after the treatment. Osteoblastic cells appeared healthy on all of the samples. Interestingly, both hydrophilic SiC NWs and SiC/SiOx NWs generated a favorable distribution of focal adhesions around the cell body confirmed also by scanning electron microscopy images. Moreover, osteoblasts grown on hydrogen plasma treated SiC/SiOx NWs showed an increased metabolic activity testified by a significantly higher cell number. In conclusion, we are here demonstrating that hydrogen plasma treatment of SiC and SiC/SiOx NWs induce a better osteoblastic cellular adhesion by increasing NWs wettability. We are therefore suggesting that hydrogen plasma treatment of SiC/SiOx can offer a suitable method to develop scaffolds for bone tissue engineering applications.


Assuntos
Nanofios , Animais , Compostos Inorgânicos de Carbono , Hidrogênio , Camundongos , Osteoblastos , Compostos de Silício
20.
Polymers (Basel) ; 13(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670792

RESUMO

The production of 3D printed safety protection devices (SPD) requires particular attention to the material selection and to the evaluation of mechanical resistance, biological safety and surface roughness related to the accumulation of bacteria and viruses. We explored the possibility to adopt additive manufacturing technologies for the production of respirator masks, responding to the sudden demand of SPDs caused by the emergency scenario of the pandemic spread of SARS-COV-2. In this study, we developed different prototypes of masks, exclusively applying basic additive manufacturing technologies like fused deposition modeling (FDM) and droplet-based precision extrusion deposition (db-PED) to common food packaging materials. We analyzed the resulting mechanical characteristics, biological safety (cell adhesion and viability), surface roughness and resistance to dissolution, before and after the cleaning and disinfection phases. We showed that masks 3D printed with home-grade printing equipment have similar performances compared to the industrial-grade ones, and furthermore we obtained a perfect face fit by customizing their shape. Finally, we developed novel approaches to the additive manufacturing post-processing phases essential to assure human safety in the production of 3D printed custom medical devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA