Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Gastroenterology ; 164(2): 228-240, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36183751

RESUMO

BACKGROUND & AIMS: Inflammatory bowel diseases (IBD) are affected by dietary factors, including nondigestible carbohydrates (fibers), which are fermented by colonic microbes. Fibers are overall beneficial, but not all fibers are alike, and some patients with IBD report intolerance to fiber consumption. Given reproducible evidence of reduced fiber-fermenting microbes in patients with IBD, we hypothesized that fibers remain intact in select patients with reduced fiber-fermenting microbes and can then bind host cell receptors, subsequently promoting gut inflammation. METHODS: Colonic biopsies cultured ex vivo and cell lines in vitro were incubated with oligofructose (5 g/L), or fermentation supernatants (24-hour anaerobic fermentation) and immune responses (cytokine secretion [enzyme-linked immunosorbent assay/meso scale discovery] and expression [quantitative polymerase chain reaction]) were assessed. Influence of microbiota in mediating host response was examined and taxonomic classification of microbiota was conducted with Kraken2 and metabolic profiling by HUMAnN2, using R software. RESULTS: Unfermented dietary ß-fructan fibers induced proinflammatory cytokines in a subset of IBD intestinal biopsies cultured ex vivo, and immune cells (including peripheral blood mononuclear cells). Results were validated in an adult IBD randomized controlled trial examining ß-fructan supplementation. The proinflammatory response to intact ß-fructan required activation of the NLRP3 and TLR2 pathways. Fermentation of ß-fructans by human gut whole microbiota cultures reduced the proinflammatory response, but only when microbes were collected from patients without IBD or patients with inactive IBD. Fiber-induced immune responses correlated with microbe functions, luminal metabolites, and dietary fiber avoidance. CONCLUSION: Although fibers are typically beneficial in individuals with normal microbial fermentative potential, some dietary fibers have detrimental effects in select patients with active IBD who lack fermentative microbe activities. The study is publicly accessible at the U.S. National Institutes of Health database (clinicaltrials.gov identification number NCT02865707).


Assuntos
Frutanos , Doenças Inflamatórias Intestinais , Adulto , Humanos , Leucócitos Mononucleares , Intestinos , Fibras na Dieta , Inflamação
2.
Gut ; 72(8): 1462-1471, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36788016

RESUMO

OBJECTIVE: The measure of serum proteome in the preclinical state of Crohn's disease (CD) may provide insight into biological pathways involved in CD pathogenesis. We aimed to assess associations of serum proteins with future CD onset and with other biomarkers predicting CD risk in a healthy at-risk cohort. DESIGN: In a nested case-control study within the Crohn's and Colitis Canada Genetics Environment Microbial Project (CCC-GEM) cohort, which prospectively follows healthy first-degree relatives (FDRs), subjects who developed CD (n=71) were matched with four FDRs remaining healthy (n=284). Using samples at recruitment, serum protein profiles using the Olink Proximity Extension Assay platform was assessed for association with future development of CD and with other baseline biomarkers as follows: serum antimicrobial antibodies (AS: positive antibody sum) (Prometheus); faecal calprotectin (FCP); gut barrier function using the fractional excretion of lactulose-to-mannitol ratio (LMR) assay. RESULTS: We identified 25 of 446 serum proteins significantly associated with future development of CD. C-X-C motif chemokine 9 (CXCL9) had the highest OR with future risk of CD (OR=2.07 per SD, 95% CI 1.58 to 2.73, q=7.9e-5), whereas matrix extracellular phosphoglycoprotein had the lowest OR (OR 0.44, 95% CI 0.29 to 0.66, q=0.02). Notably, CXCL9 was the only analyte significantly associated with all other CD-risk biomarkers with consistent direction of effect (FCP: OR=2.21; LMR: OR=1.67; AS: OR=1.59) (q<0.05 for all). CONCLUSION: We identified serum proteomic signatures associated with future CD development, reflecting potential early biological processes of immune and barrier dysfunction.


Assuntos
Doença de Crohn , Humanos , Doença de Crohn/metabolismo , Estudos de Casos e Controles , Proteômica , Biomarcadores , Imunidade
3.
Gastroenterology ; 163(5): 1364-1376.e10, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35850197

RESUMO

BACKGROUND & AIMS: The gut microbiome has been suggested to play a role in gut barrier hemostasis, but data are scarce and limited to animal studies. We therefore aimed to assess whether alterations in gut microbial composition and functional pathways are associated with gut barrier function in a cohort of healthy first-degree relatives of patients with Crohn's disease. METHODS: We used the Crohn's and Colitis Canada Genetic Environmental Microbial (CCC-GEM) cohort of healthy first-degree relatives of patients with Crohn's disease. Gut barrier function was assessed using the urinary fractional excretion of lactulose-to-mannitol ratio (LMR). Microbiome composition was assessed by sequencing fecal 16S ribosomal RNA. The cohort was divided into a discovery cohort (n = 2472) and a validation cohort (n = 655). A regression model was used to assess microbial associations with the LMR. A random forest classifier algorithm was performed to assess microbial community contribution to barrier function. RESULTS: Individuals with impaired barrier function (LMR >0.025) had reduced alpha-diversity (Chao1 index, P = 4.0e-4) and altered beta-diversity (Bray-Curtis dissimilarity index, R2 = 0.001, P = 1.0e-3) compared with individuals with an LMR ≤0.025. When taxa were assessed individually, we identified 8 genera and 52 microbial pathways associated with an LMR >0.025 (q < 0.05). Four genera (decreased prevalence of Adlercreutzia, Clostridia UCG 014, and Clostridium sensu stricto 1 and increased abundance of Colidextribacter) and 8 pathways (including decreased biosynthesis of glutamate, tryptophan, and threonine) were replicated in the validation cohort. The random forest approach revealed that the bacterial community is associated with gut barrier function (area under the curve, 0.63; P = 1.4e-6). CONCLUSIONS: The gut microbiome community and pathways are associated with changes in gut barrier function. These findings may identify potential microbial targets to modulate gut barrier.


Assuntos
Doença de Crohn , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Doença de Crohn/microbiologia , RNA Ribossômico 16S/genética , Lactulose , Triptofano , Manitol , Treonina , Glutamatos
4.
BMC Med ; 21(1): 178, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170273

RESUMO

BACKGROUND: Early-stage breast cancer patients treated with chemotherapy risk the development of metabolic disease and weight gain, which can result in increased morbidity and reduced quality of life in survivorship. We aimed to analyze changes within the gastrointestinal microbiome of early-stage breast cancer patients treated with and without chemotherapy to investigate a potential relationship between dysbiosis, a systemic inflammatory response, and resultant anthropomorphic changes. METHODS: We undertook an a priori analysis of serially collected stool and plasma samples from 40 patients with early-stage breast cancer who underwent adjuvant endocrine therapy only, adjuvant chemotherapy only, or both. Gut microbiota were assessed by metagenomic comparison of stool samples following deep sequencing. Inflammatory biomarkers were evaluated by proteomic analysis of plasma and measurement of fecal calprotectin. Body composition was investigated by dual-energy X-ray absorptiometry to determine biomass indices. RESULTS: As opposed to treatment with endocrine therapy only, chemotherapy resulted in statistically and clinically significant weight gain and an increase in the android to gynoid ratio of fat distribution. Patients treated with chemotherapy gained an average of 0.15% total mass per month, as opposed to a significantly different loss of 0.19% in those patients who received endocrine-only therapy. Concurrently, a twofold increase in fecal calprotectin occurred after chemotherapy that is indicative of interferon-dependent inflammation and evidence of colonic inflammation. These anthropomorphic and inflammatory changes occurred in concert with a chemotherapy-dependent effect on the gut microbiome as evidenced by a reduction in both the abundance and variety of microbial species. CONCLUSIONS: We confirm the association of chemotherapy treatment with weight gain and potential deleterious anthropometric changes and suggest that alterations of bacterial flora may contribute to these phenomena through the induction of systemic inflammation. Consequently, the gut microbiome may be a future target for intervention in preventing chemotherapy-dependent anthropometric changes.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Estudos de Coortes , Estudos Prospectivos , Disbiose/induzido quimicamente , Qualidade de Vida , Proteômica , Inflamação/induzido quimicamente , Aumento de Peso , Fezes/química , Fezes/microbiologia , Antineoplásicos/efeitos adversos , Complexo Antígeno L1 Leucocitário/análise , Complexo Antígeno L1 Leucocitário/uso terapêutico
5.
J Inherit Metab Dis ; 45(3): 517-528, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35066899

RESUMO

The objective was to investigate whether resveratrol (RSV) can improve exercise capacity in patients with fatty acid oxidation (FAO) disorders. The study was a randomized, double-blind, cross-over trial. Nine patients with very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency or carnitine palmitoyl transferase (CPT) II deficiency were randomized to receive either 8 weeks of 1000 mg day-1 RSV or placebo (P) followed by a 4-weeks wash-out period and subsequently 8 weeks of the opposite treatment. Primary outcome measures were heart rate and FAO as measured via stable isotope technique during constant workload exercise. Secondary outcome measures included fat and glucose metabolism; perceived exertion; as well as subjective measures of energy expenditure, fatigue, and daily function. Eight participants completed the trial. Heart rate did not differ at the end of exercise after treatment with RSV vs placebo (P = .063). Rate of oxidation of palmitate at end of exercise was not different with 1.5 ± 0.8 (RSV) vs 1.3 ± 0.6 (P) µmol kg-1  min-1 (P = .109). Secondary outcomes did not change except for increased plasma glycerol and decreased plasma glucose levels at the end of exercise after treatment with RSV vs placebo. A daily dose of 1000 mg resveratrol does not improve exercise capacity or FAO during exercise in patients with CPTII or VLCAD deficiencies.


Assuntos
Erros Inatos do Metabolismo Lipídico , Acil-CoA Desidrogenase de Cadeia Longa , Carnitina O-Palmitoiltransferase/deficiência , Síndrome Congênita de Insuficiência da Medula Óssea , Estudos Cross-Over , Tolerância ao Exercício/fisiologia , Ácidos Graxos/metabolismo , Humanos , Erros Inatos do Metabolismo Lipídico/metabolismo , Erros Inatos do Metabolismo , Doenças Mitocondriais , Doenças Musculares , Oxirredução , Resveratrol/farmacologia , Resveratrol/uso terapêutico
6.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142193

RESUMO

Inflammatory bowel diseases (IBD), including Ulcerative Colitis (UC) and Crohn's disease (CD), are inflammatory conditions of the intestinal tract that affect women in their reproductive years. Pregnancy affects Th1- and Th2-cytokines, but how these changes occur during pregnancy in IBD is unclear. We performed a longitudinal profiling of serum cytokines in a cohort of 11 healthy pregnant women and 76 pregnant women with IBD from the first trimester of pregnancy to the first 12 months post-partum. Participants were monitored for biochemical disease activity (C-reactive protein [CRP] and fecal calprotectin [FCP]) and clinical activities. Maternal cytokines were measured using ELISA. We identified changes in Th1 and Th17 cytokines throughout pregnancy in healthy pregnant women. During pregnancy, maternal serum cytokine expressions were influenced by IBD, disease activity, and medications. Active UC was associated with an elevation in IL-21, whereas active CD was associated with elevated IFN-γ, IL-6, and IL-21. Interestingly, T1 serum cytokine levels of IL-22 (>0.624 pg/mL) and IL-6 (>0.648 pg/mL) were associated with worse IBD disease activity throughout pregnancy in women with UC and CD, respectively. This shows serum cytokines in pregnancy differ by IBD, disease activity, and medications. We show for the first time that T1 IL-22 and IL-6 correlate with IBD disease course throughout pregnancy.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Proteína C-Reativa/metabolismo , Citocinas/metabolismo , Progressão da Doença , Feminino , Humanos , Interleucina-6/metabolismo , Interleucinas , Complexo Antígeno L1 Leucocitário , Gravidez , Interleucina 22
7.
Gastroenterology ; 159(6): 2092-2100.e5, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32791132

RESUMO

BACKGROUND & AIMS: Increased intestinal permeability has been associated with Crohn's disease (CD), but it is not clear whether it is a cause or result of the disease. We performed a prospective study to determine whether increased intestinal permeability is associated with future development of CD. METHODS: We assessed the intestinal permeability, measured by the urinary fractional excretion of lactulose-to-mannitol ratio (LMR) at recruitment in 1420 asymptomatic first-degree relatives (6-35 years old) of patients with CD (collected from 2008 through 2015). Participants were then followed up for a diagnosis of CD from 2008 to 2017, with a median follow-up time of 7.8 years. We analyzed data from 50 participants who developed CD after a median of 2.7 years during the study period, along with 1370 individuals who remained asymptomatic until October 2017. We used the Cox proportional hazards model to evaluate time-related risk of CD based on the baseline LMR. RESULTS: An abnormal LMR (>0.03) was associated with a diagnosis of CD during the follow-up period (hazard ratio, 3.03; 95% CI, 1.64-5.63; P = 3.97 × 10-4). This association remained significant even when the test was performed more than 3 years before the diagnosis of CD (hazard ratio, 1.62; 95% CI, 1.051-2.50; P = .029). CONCLUSIONS: Increased intestinal permeability is associated with later development of CD; these findings support a model in which altered intestinal barrier function contributes to pathogenesis. Abnormal gut barrier function might serve as a biomarker for risk of CD onset.


Assuntos
Doença de Crohn/epidemiologia , Mucosa Intestinal/patologia , Adolescente , Adulto , Criança , Doença de Crohn/patologia , Feminino , Seguimentos , Humanos , Lactulose/administração & dosagem , Lactulose/metabolismo , Lactulose/urina , Masculino , Manitol/administração & dosagem , Manitol/metabolismo , Manitol/urina , Permeabilidade , Estudos Prospectivos , Eliminação Renal , Fatores de Risco , Adulto Jovem
8.
Eur J Immunol ; 49(8): 1251-1268, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31054259

RESUMO

Intravenous immunoglobulin (IVIg) is used to treat immune-mediated diseases but its mechanism of action is poorly understood. We have reported that co-treatment with IVIg and lipopolysaccharide activates macrophages to produce large amounts of anti-inflammatory IL-10 in vitro. Thus, we asked whether IVIg-treated macrophages or IVIg could reduce intestinal inflammation in mice during dextran sulfate sodium (DSS)-induced colitis by inducing macrophage IL-10 production in vivo. Adoptive transfer of IVIg-treated macrophages reduces intestinal inflammation in mice and collagen accumulation post-DSS. IVIg treatment also reduces DSS-induced intestinal inflammation and its activity is dependent on the Fc portion of the antibody. Ex vivo, IVIg induces IL-10 production and reduces IL-12/23p40 and IL-1ß production in colon explant cultures. Co-staining tissues for mRNA, we demonstrate that macrophages are the source of IL-10 in IVIg-treated mice; and using IL-10-GFP reporter mice, we demonstrate that IVIg induces IL-10 production by intestinal macrophages. Finally, IVIg-mediated protection is lost in mice deficient in macrophage IL-10 production (LysMcre+/- IL-10fl/fl mice). Together, our data demonstrate a novel, in vivo mechanism of action for IVIg. IVIg-treated macrophages or IVIg could be used to treat people with intestinal inflammation and may be particularly useful for people with inflammatory bowel disease, who are refractory to therapy.


Assuntos
Colite/tratamento farmacológico , Colo/metabolismo , Imunoglobulinas Intravenosas/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Interleucina-10/metabolismo , Macrófagos/imunologia , Transferência Adotiva , Animais , Diferenciação Celular , Células Cultivadas , Colite/induzido quimicamente , Colo/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-10/genética , Macrófagos/efeitos dos fármacos , Macrófagos/transplante , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout
9.
BMC Nephrol ; 21(1): 517, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33243160

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is characterized by dysbiosis, elevated levels of uremic toxins, systemic inflammation, and increased markers of oxidative stress. These factors lead to an increased risk of cardiovascular disease (CVD) which is common among CKD patients. Supplementation with high amylose maize resistant starch type 2 (RS-2) can change the composition of the gut microbiota, and reduce markers of inflammation and oxidative stress in patients with end-stage renal disease. However, the impact of RS-2 supplementation has not been extensively studied in CKD patients not on dialysis. Aerobic exercise training lowers certain markers of inflammation in CKD patients. Whether combining aerobic training along with RS-2 supplementation has an additive effect on the aforementioned biomarkers in predialysis CKD patients has not been previously investigated. METHODS: The study is being conducted as a 16-week, double-blind, placebo controlled, parallel arm, randomized controlled trial. Sixty stage 3-4 CKD patients (ages of 30-75 years) are being randomized to one of four groups: RS-2 & usual care, RS-2 & aerobic exercise, placebo (cornstarch) & usual care and placebo & exercise. Patients attend four testing sessions: Two baseline (BL) sessions with follow up visits 8 (wk8) and 16 weeks (wk16) later. Fasting blood samples, resting brachial and central blood pressures, and arterial stiffness are collected at BL, wk8 and wk16. A stool sample is collected for analysis of microbial composition and peak oxygen uptake is assessed at BL and wk16. Blood samples will be assayed for p-cresyl sulphate and indoxyl sulphate, c-reactive protein, tumor necrosis factor α, interleukin 6, interleukin 10, monocyte chemoattractant protein 1, malondialdehyde, 8-isoprostanes F2a, endothelin-1 and nitrate/nitrite. Following BL, subjects are randomized to their group. Individuals randomized to conditions involving exercise will attend three supervised moderate intensity (55-65% peak oxygen uptake) aerobic training sessions (treadmills, bikes or elliptical machine) per week for 16 weeks. DISCUSSION: This study has the potential to yield information about the effect of RS-2 supplementation on key biomarkers believed to impact upon the development of CVD in patients with CKD. We are examining whether there is an additive effect of exercise training and RS-2 supplementation on these key variables. TRIAL REGISTRATION: Clinicaltrials.gov Trial registration# NCT03689569 . 9/28/2018, retrospectively registered.


Assuntos
Amilose/uso terapêutico , Exercício Físico , Microbioma Gastrointestinal , Falência Renal Crônica/terapia , Adulto , Idoso , Análise de Variância , Biomarcadores , Método Duplo-Cego , Humanos , Inflamação/diagnóstico , Pessoa de Meia-Idade , Estresse Oxidativo , Amido Resistente/uso terapêutico , Zea mays
10.
Am J Physiol Gastrointest Liver Physiol ; 317(1): G17-G39, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31125257

RESUMO

A reduction in intestinal barrier function is currently believed to play an important role in pathogenesis of many diseases, as it facilitates passage of injurious factors such as lipopolysaccharide, peptidoglycan, whole bacteria, and other toxins to traverse the barrier to damage the intestine or enter the portal circulation. Currently available evidence in animal models and in vitro systems has shown that certain dietary interventions can be used to reinforce the intestinal barrier to prevent the development of disease. The relevance of these studies to human health is unknown. Herein, we define the components of the intestinal barrier, review available modalities to assess its structure and function in humans, and review the available evidence in model systems or perturbations in humans that diet can be used to fortify intestinal barrier function. Acknowledging the technical challenges and the present gaps in knowledge, we provide a conceptual framework by which evidence could be developed to support the notion that diet can reinforce human intestinal barrier function to restore normal function and potentially reduce the risk for disease. Such evidence would provide information on the development of healthier diets and serve to provide a framework by which federal agencies such as the US Food and Drug Administration can evaluate evidence linking diet with normal human structure/function claims focused on reducing risk of disease in the general public.


Assuntos
Dieta Saudável/normas , Rotulagem de Alimentos/normas , Microbioma Gastrointestinal , Absorção Intestinal , Intestinos/microbiologia , Valor Nutritivo , Animais , Disbiose , Interações Hospedeiro-Patógeno , Humanos , Permeabilidade
11.
Cryobiology ; 84: 69-76, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30076796

RESUMO

We have developed a novel, intraluminal preservation solution that is tailored to the metabolic requirements of the intestine. This organ-specific solution addresses many of the problems associated with low temperature organ storage including energy, oxidative and osmotic stresses. However, conservation of energy levels remains one of the most difficult obstacles to overcome due to the inherent sensitivity of the mucosa to ischemia. Creatine-loading has become a popular and scientifically proven method of augmenting energy reserves in athletes performing anaerobic burst work activities. We hypothesized that if we could develop a method that was able to augment cellular energy levels, the structure and function of the mucosa would be more effectively preserved. The purpose of this study was to determine if creatine-loading is a feasible and effective strategy for preserving the intestine. Our data indicate that creatine loading has significant impact on energy levels during storage with corresponding improvements in mucosal structure and function. Both of our rodent models, a) continuous perfusion for 4 h and b) a single flush with our intraluminal preservation solution supplemented with 50 mM creatine, demonstrated significant improvements in creatine phosphate, ATP, Energy Charge and ATP/AMP following cold storage (P < 0.05). Notably, after 10 h creatine phosphate was 324% greater in Creatine-treated tissues compared to Controls (P < 0.05). Preferential utilization of glutathione in the Creatine group was effective at controlling oxidative injury after 10 h storage (P < 0.05). Improvements in barrier function and electrophysiology with creatine-treatment reflected superior mucosal integrity after 10 h storage; Permeability and Transepithelial resistance measurements remained at fresh tissue values. This was in stark contrast to Control tissues in which permeability rose to >300% of fresh tissue values (P < 0.005) and transepithelial resistance dropped by 95% (P < 0.005). After 10 h storage, Park's grading of histologic injury reflected extensive villus denudation (grade 4) in control tissues compared to healthy tissue (grade 0) in the Creatine group. This study demonstrates that a strategy of creatine supplementation of our intraluminal preservation solution facilitates the preservation of the intestinal mucosa during storage.


Assuntos
Creatina/farmacologia , Criopreservação/métodos , Intestino Delgado , Soluções para Preservação de Órgãos/química , Preservação de Órgãos/métodos , Animais , Mucosa Intestinal/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Masculino , Soluções para Preservação de Órgãos/farmacologia , Permeabilidade/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
12.
Clin Infect Dis ; 62(12): 1479-1486, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27025836

RESUMO

BACKGROUND: Recurrent Clostridium difficile infection (RCDI) is associated with repeated antibiotic treatment and the enhanced growth of antibiotic-resistant microbes. This study tested the hypothesis that patients with RCDI would harbor large numbers of antibiotic-resistant microbes and that fecal microbiota transplantation (FMT) would reduce the number of antibiotic-resistant genes. METHODS: In a single center study, patients with RCDI (n = 20) received FMT from universal donors via colonoscopy. Stool samples were collected from donors (n = 3) and patients prior to and following FMT. DNA was extracted and shotgun metagenomics performed. Results as well as assembled libraries from a healthy cohort (n = 87) obtained from the Human Microbiome Project were aligned against the NCBI bacterial taxonomy database and the Comprehensive Antibiotic Resistance Database. Results were corroborated through a DNA microarray containing 354 antibiotic resistance (ABR) genes. RESULTS: RCDI patients had a greater number and diversity of ABR genes compared with donors and healthy controls. Beta-lactam, multidrug efflux pumps, fluoroquinolone, and antibiotic inactivation ABR genes were increased in RCDI patients, although donors primarily had tetracycline resistance. RCDI patients were dominated by Proteobacteria with Escherichia coli and Klebsiella most prevalent. FMT resulted in a resolution of symptoms that correlated directly with a decreased number and diversity of ABR genes and increased Bacteroidetes and Firmicutes with reduced Proteobacteria. ABR gene profiles were maintained in recipients for up to a year following FMT. CONCLUSIONS: RCDI patients have increased numbers of antibiotic-resistant organisms. FMT is effective in the eradication of pathogenic antibiotic-resistant organisms and elimination of ABR genes.


Assuntos
Clostridioides difficile/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Enterocolite Pseudomembranosa/terapia , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/farmacologia , Clostridioides difficile/genética , Enterocolite Pseudomembranosa/microbiologia , Fezes/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
13.
Nutr Neurosci ; 19(8): 337-345, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26086200

RESUMO

OBJECTIVES: Western-style diets high in saturated fat and refined carbohydrate have been shown to alter gut microbiota as well as being associated with altered behaviour and learning ability. The objective of this study was to determine the effects of short-term intake of a Western-style diet on intestinal cytokine expression, tryptophan metabolism, and levels of neurotransmitters in the brain. METHODS: At 7 weeks of age, 129S1/SvImJ mice were placed on a standard chow or Western-style diet (fat 33%, refined carbohydrates 49%) for 3 weeks. Anxiety-like behaviour was assessed by the latency to step-down test and exploration assessed in a Barnes maze. Neurotransmitter levels in forebrains were analysed by high-pressure liquid chromatography. Liver metabolism was examined by 1H nuclear magnetic resonance (NMR). Cytokine expression in the intestine was measured using MesoScale discovery platform. mRNA levels of tryptophan hydroxylase (Tph) and indoleamine 2,3-dioxygenase (IDO) in the brain and intestine were measured using qPCR. RESULTS: Results showed that mice fed the Western diet displayed reduced exploratory and anxiety-like behaviour. Anxiolytic effects correlated with increased hippocampal brain-derived neurotrophic factor (BDNF) and tryptophan levels. Brain serotonin was not altered. These changes were associated with reduced expression of small intestinal indoleamine 2,3-dioxygenase, a tryptophan-processing enzyme. Western diet-fed mice exhibited low-grade systemic and intestinal inflammation along with altered liver metabolic profiles. DISCUSSION: In conclusion, diets high in fat and refined sugar are associated with increased levels of brain BDNF and tryptophan and decreased exploratory and anxiety-like behaviour. These behavioural changes correlated with altered intestinal tryptophan metabolism and liver metabolic profiles.


Assuntos
Ansiedade/etiologia , Dieta Ocidental/efeitos adversos , Modelos Animais de Doenças , Mucosa Intestinal/metabolismo , Doenças Metabólicas/etiologia , Prosencéfalo/metabolismo , Triptofano/metabolismo , Animais , Ansiedade/imunologia , Ansiedade/metabolismo , Comportamento Animal , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Citocinas/metabolismo , Comportamento Exploratório , Regulação Enzimológica da Expressão Gênica , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Mucosa Intestinal/enzimologia , Mucosa Intestinal/imunologia , Intestino Delgado/enzimologia , Intestino Delgado/imunologia , Intestino Delgado/metabolismo , Fígado/imunologia , Fígado/metabolismo , Masculino , Doenças Metabólicas/imunologia , Doenças Metabólicas/metabolismo , Camundongos da Linhagem 129 , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/enzimologia , Neurônios/imunologia , Neurônios/metabolismo , Prosencéfalo/enzimologia , Prosencéfalo/imunologia , Organismos Livres de Patógenos Específicos , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo
14.
J Nutr ; 145(9): 2060-6, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26180249

RESUMO

BACKGROUND: Prebiotic fibers stimulate the growth and activity of the gut microbiota. Interleukin 10-deficient (IL-10(-/-)) mice develop a colitis that is influenced by the gut microbial composition. OBJECTIVE: The purpose of this study was to determine the effect of prebiotic fibers on the intestinal microbiota and immune function in IL-10(-/-) mice. METHODS: At 4 wk of age, male IL-10(-/-) mice (n = 8/group) were randomly assigned to 5 diets: unpurified diet with cellulose (4%; control), corn-derived hydroxypropylated new resistant starch (NRS) (2% NRS + 2% cellulose), soluble fiber dextrin from tapioca (SFD-t) (4%), soluble fiber dextrin from corn (SFD-c) (4%), or soluble corn fiber (4%) for 12 wk. Growth, small intestinal permeability, histologic injury, intestinal cytokine secretion, and microbiota composition by 16S ribosomal RNA pyrosequencing of stool were measured. ANOVA and principal component analysis were applied to assess the fibers' effects. RESULTS: There were no significant differences in mouse growth, intestinal weight, length, or gut permeability over the 12 wk feeding period. Mice fed dextrin-based diets secreted 47-88% less colonic IL-1ß, tumor necrosis factor α, and IL-23 (SFD-t diet) and IL-12 heterodimer p70, IL-6, and chemokine ligand 1 (CXCL1) (SFD-c diet) (P < 0.05) than did the control group, whereas NRS-fed mice secreted 55-77% less IL-6 and CXCL1 (P < 0.05). Both SFD-t- and SFD-c-fed mice had a 70-75% lower abundance of Lactobacillaceae than control mice. The SFD-t diet group had a lower enterocyte injury score (P < 0.04) than did control mice, and this was associated with increased abundance of butyrate producers, including Incertae sedis XIV, Lachnospiraceae, and Ruminococcaceae (P < 0.001). CONCLUSIONS: These results demonstrate that soluble prebiotic fibers selectively stimulate the growth of a distinctive gut microbiota in IL-10(-/-) mice. SFD-t induced the growth of butyrate-producing microbes and was effective in reducing proinflammatory cytokine secretion and enterocyte injury in this mouse model of colitis.


Assuntos
Dextrinas/farmacologia , Fibras na Dieta/farmacologia , Microbioma Gastrointestinal , Interleucina-10/metabolismo , Intestinos/microbiologia , Animais , Quimiocina CXCL1/metabolismo , Clostridiales/efeitos dos fármacos , Colite/tratamento farmacológico , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/microbiologia , Dieta/veterinária , Fezes/química , Fezes/microbiologia , Interleucina-10/deficiência , Interleucina-1beta/metabolismo , Interleucina-23/metabolismo , Interleucina-6/metabolismo , Intestinos/efeitos dos fármacos , Lactobacillaceae/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Prebióticos , Fator de Necrose Tumoral alfa/metabolismo , Zea mays
15.
BMC Gastroenterol ; 15: 169, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26635079

RESUMO

BACKGROUND: Evidence for the role of the gut microbiome in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) is emerging. Strategies to manipulate the gut microbiota towards a healthier community structure are actively being investigated. Based on their ability to favorably modulate the gut microbiota, prebiotics may provide an inexpensive yet effective dietary treatment for NAFLD. Additionally, prebiotics have established benefits for glucose control and potentially weight control, both advantageous in managing fatty liver disease. Our objective is to evaluate the effects of prebiotic supplementation, adjunct to those achieved with diet-induced weight loss, on heptic injury and liver fat, the gut microbiota, inflammation, glucose tolerance, and satiety in patients with NAFLD. METHODS/DESIGN: In a double blind, placebo controlled, parallel group study, adults (BMI ≥25) with confirmed NAFLD will be randomized to either a 16 g/d prebiotic supplemented group or isocaloric placebo group for 24 weeks (n = 30/group). All participants will receive individualized dietary counseling sessions with a registered dietitian to achieve 10 % weight loss. Primary outcome measures include change in hepatic injury (fibrosis and inflammation) and liver fat. Secondary outcomes include change in body composition, appetite and dietary adherence, glycemic and insulinemic responses and inflammatory cytokines. Mechanisms related to prebiotic-induced changes in gut microbiota (shot-gun sequencing) and their metabolic by-products (volatile organic compounds) and de novo lipogenesis (using deuterium incorporation) will also be investigated. DISCUSSION: There are currently no medications or surgical procedures approved for the treatment of NAFLD and weight loss via lifestyle modification remains the cornerstone of current care recommendations. Given that prebiotics target multiple metabolic impairments associated with NAFLD, investigating their ability to modulate the gut microbiota and hepatic health in patients with NAFLD is warranted. TRIAL REGISTRATION: ClinicalTrials.gov (NCT02568605) Registered 30 September 2015.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica/terapia , Prebióticos/administração & dosagem , Adolescente , Adulto , Idoso , Índice de Massa Corporal , Protocolos Clínicos , Suplementos Nutricionais/microbiologia , Método Duplo-Cego , Feminino , Humanos , Lipogênese , Fígado/microbiologia , Cirrose Hepática/etiologia , Cirrose Hepática/microbiologia , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/microbiologia , Redução de Peso , Adulto Jovem
16.
Nat Rev Gastroenterol Hepatol ; 21(5): 301-318, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38326443

RESUMO

Obesity and metabolic syndrome represent a growing epidemic worldwide. Body weight is regulated through complex interactions between hormonal, neural and metabolic pathways and is influenced by numerous environmental factors. Imbalances between energy intake and expenditure can occur due to several factors, including alterations in eating behaviours, abnormal satiation and satiety, and low energy expenditure. The gut microbiota profoundly affects all aspects of energy homeostasis through diverse mechanisms involving effects on mucosal and systemic immune, hormonal and neural systems. The benefits of dietary fibre on metabolism and obesity have been demonstrated through mechanistic studies and clinical trials, but many questions remain as to how different fibres are best utilized in managing obesity. In this Review, we discuss the physiochemical properties of different fibres, current findings on how fibre and the gut microbiota interact to regulate body weight homeostasis, and knowledge gaps related to using dietary fibres as a complementary strategy. Precision medicine approaches that utilize baseline microbiota and clinical characteristics to predict individual responses to fibre supplementation represent a new paradigm with great potential to enhance weight management efficacy, but many challenges remain before these approaches can be fully implemented.


Assuntos
Fibras na Dieta , Microbioma Gastrointestinal , Obesidade , Fibras na Dieta/metabolismo , Humanos , Obesidade/metabolismo , Microbioma Gastrointestinal/fisiologia , Metabolismo Energético/fisiologia
17.
Gut Microbes ; 16(1): 2345134, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38685731

RESUMO

Microbial-based therapeutics in clinical practice are of considerable interest, and a recent study demonstrated fecal microbial transplantation (FMT) followed by dietary fiber supplements improved glucose homeostasis. Previous evidence suggests that donor and recipient compatibility and FMT protocol are key determinants, but little is known about the involvement of specific recipient factors. Using data from our recent randomized placebo-control phase 2 clinical trial in adults with obesity and metabolic syndrome, we grouped participants that received FMT from one of 4 donors with either fiber supplement into HOMA-IR responders (n = 21) and HOMA-IR non-responders (n = 8). We further assessed plasma bile acids using targeted metabolomics and performed subgroup analyzes to evaluate the effects of recipient parameters and gastrointestinal factors on microbiota engraftment and homeostatic model assessment of insulin resistance (HOMA2-IR) response. The baseline fecal microbiota composition at genus level of recipients could predict the improvements in HOMA2-IR at week 6 (ROC-AUC = 0.70). Prevotella was identified as an important predictor, with responders having significantly lower relative abundance than non-responders (p = .02). In addition, recipients displayed a highly individualized degree of microbial engraftment from donors. Compared to the non-responders, the responders had significantly increased bacterial richness (Chao1) after FMT and a more consistent engraftment of donor-specific bacteria ASVs (amplicon sequence variants) such as Faecalibacillus intestinalis (ASV44), Roseburia spp. (ASV103), and Christensenellaceae spp. (ASV140) (p < .05). Microbiota engraftment was strongly associated with recipients' factors at baseline including initial gut microbial diversity, fiber and nutrient intakes, inflammatory markers, and bile acid derivative levels. This study identified that responders to FMT therapy had a higher engraftment rate in the transplantation of specific donor-specific microbes, which were strongly correlated with insulin sensitivity improvements. Further, the recipient baseline gut microbiota and related factors were identified as the determinants for responsiveness to FMT and fiber supplementation. The findings provide a basis for the development of precision microbial therapeutics for the treatment of metabolic syndrome.


Assuntos
Bactérias , Ácidos e Sais Biliares , Transplante de Microbiota Fecal , Fezes , Microbioma Gastrointestinal , Síndrome Metabólica , Humanos , Síndrome Metabólica/terapia , Síndrome Metabólica/microbiologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Fezes/microbiologia , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/sangue , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Bactérias/metabolismo , Obesidade/terapia , Obesidade/microbiologia , Fibras na Dieta/administração & dosagem , Fibras na Dieta/metabolismo , Resistência à Insulina , Resultado do Tratamento
18.
Eur J Clin Nutr ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480843

RESUMO

Dietary fibers are associated with favorable gastrointestinal, immune, and metabolic health outcomes when consumed at sufficient levels. Despite the well-described benefits of dietary fibers, children and adolescents continue to fall short of daily recommended levels. This gap in fiber intake (i.e., "fiber gap") might increase the risk of developing early-onset pediatric obesity and obesity-related comorbidities such as type 2 diabetes mellitus into adulthood. The structure-dependent physicochemical properties of dietary fiber are diverse. Differences in solubility, viscosity, water-holding capacity, binding capability, bulking effect, and fermentability influence the physiological effects of dietary fibers that aid in regulating appetite, glycemic and lipidemic responses, and inflammation. Of growing interest is the fermentation of fibers by the gut microbiota, which yields both beneficial and less favorable end-products such as short-chain fatty acids (e.g., acetate, propionate, and butyrate) that impart metabolic and immunomodulatory properties, and gases (e.g., hydrogen, carbon dioxide, and methane) that cause gastrointestinal symptoms, respectively. This narrative review summarizes (1) the implications of fibers on the gut microbiota and the pathophysiology of pediatric obesity, (2) some factors that potentially contribute to the fiber gap with an emphasis on undesirable gastrointestinal symptoms, (3) some methods to alleviate fiber-induced symptoms, and (4) the therapeutic potential of whole foods and commonly marketed fiber supplements for improved health in pediatric obesity.

19.
Muscle Nerve ; 48(6): 897-901, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23512655

RESUMO

INTRODUCTION: We investigated the effect of high-intensity exercise on plasma creatine kinase (CK) in patients with muscular dystrophies. METHODS: Fourteen patients with Becker (BMD), facioscapulohumeral (FSHD), or limb-girdle type 2 (LGMD2) muscular dystrophy, and 8 healthy subjects performed 5 cycling tests: an incremental max test, and tests at 65%, 75%, 85%, and 95% of maximal oxygen uptake (VO2max ). Heart rate and oxygen consumption were measured during the tests, and plasma CK was measured before, immediately after, and 24 hours after exercise. RESULTS: All subjects were able to perform high-intensity exercise at the different levels. In patients with LGMD2 and FSHD, CK normalized 24 hours after exercise compared with the pre-exercise value, whereas those with BMD and healthy controls had elevated CK values 24 hours after exercise. CONCLUSIONS: The findings suggest that high-intensity exercise is generally well tolerated in patients with LGMD2 and FSHD, whereas those with BMD may be more prone to exercise-induced damage.


Assuntos
Creatina Quinase/sangue , Distonia/sangue , Distonia/fisiopatologia , Exercício Físico , Adulto , Frequência Cardíaca , Humanos , Masculino , Pessoa de Meia-Idade , Distrofia Muscular do Cíngulo dos Membros/sangue , Distrofia Muscular Facioescapuloumeral/sangue , Miotonia Congênita/sangue , Consumo de Oxigênio , Escala Visual Analógica , Adulto Jovem
20.
Mucosal Immunol ; 16(1): 72-85, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36642380

RESUMO

The concept of immunometabolism has emerged recently whereby the repolarizing of inflammatory immune cells toward anti-inflammatory profiles by manipulating cellular metabolism represents a new potential therapeutic approach to controlling inflammation. Metabolic pathways in immune cells are tightly regulated to maintain immune homeostasis and appropriate functional specificity. Because effector and regulatory immune cell populations have different metabolic requirements, this allows for cellular selectivity when regulating immune responses based on metabolic pathways. Gut microbes have a major role in modulating immune cell metabolic profiles and functional responses through extensive interactions involving metabolic products and crosstalk between gut microbes, intestinal epithelial cells, and mucosal immune cells. Developing strategies to target metabolic pathways in mucosal immune cells through the modulation of gut microbial metabolism has the potential for new therapeutic approaches for human autoimmune and inflammatory diseases, such as inflammatory bowel disease. This review will give an overview of the relationship between metabolic reprogramming and immune responses, how microbial metabolites influence these interactions, and how these pathways could be harnessed in the treatment of inflammatory bowel disease.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , Inflamação , Células Epiteliais/metabolismo , Homeostase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA