Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38310345

RESUMO

OBJECTIVE: To investigate the relation between biomarkers associated with metabolism and subsequent development of giant cell arteritis (GCA). METHOD: Participants in the population-based Malmö Diet Cancer Study (MDCS; N = 30447), who were subsequently diagnosed with GCA, were identified in a structured process. Matched GCA-free controls were selected from the study cohort. Baseline plasma samples were analyzed using the antibody-based OLINK proteomics metabolism panel (92 metabolic proteins). Analyses were pre-designated as hypothesis-driven or hypothesis-generating. In the latter, principal component analysis was used to identify groups of proteins that explain the variance in the proteome. RESULTS: There were 95 cases with a confirmed incident diagnosis of GCA (median 12.0 years after inclusion). Among biomarkers with a priori hypotheses, Adhesion G protein-coupled receptor E2 (ADGRE2) was positively associated (odds ratio (OR) per standard deviation (SD) 1.67; 95% CI 1.08-2.57), and Fructose-1,6-bisphosphatase 1 (FBP1) negatively associated (OR per SD 0.59; 95% CI 0.35-0.99) with GCA. In particular, ADGRE2 levels were associated with subsequent GCA in the subset sampled <8.5 years before diagnosis. For meteorin-like protein (Metrnl), the highest impact on the risk of GCA was observed in those sampled closest to diagnosis with a decreasing trend with longer time to GCA (p= 0.03). In the hypothesis generating analyses, elevated levels of receptor tyrosine-like orphan receptor 1 (ROR1) were associated with subsequent GCA. CONCLUSION: Biomarkers identified years before clinical diagnosis indicated a protective role of gluconeogenesis (FBP1) and an association with macrophage activation (ADGRE2 and Metrnl) and proinflammatory signals (ROR1) for development of GCA.

2.
Rheumatology (Oxford) ; 62(6): 2304-2311, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36255228

RESUMO

OBJECTIVE: To investigate the relation between biomarkers of inflammation and subsequent development of GCA. METHOD: Participants in the population-based Malmö Diet Cancer Study (MDCS; N = 30 447), established 1991-96, who were subsequently diagnosed with GCA, were identified in a structured process. GCA-free controls, matched for sex, year of birth and year of screening were selected from the study cohort. Baseline plasma samples were analysed using the antibody-based OLINK proteomics inflammation panel (92 inflammatory proteins). Analyses were pre-designated as hypothesis-driven or hypothesis-generating. In the latter, principal component analysis was used to identify groups of proteins that explain the variance in the proteome. Within components selected based on eigenvalues, proteins with a factor loading of >0.50 were investigated. RESULTS: Ninety-four cases with a confirmed incident diagnosis of GCA (median 11.9 years after inclusion) were identified. Among biomarkers with a priori hypotheses, IFN-γ was positively associated with GCA [odds ratio (OR) per s.d. 1.52; 95% CI 1.00, 2.30]. Eight biomarkers in the hypothesis-generating analyses were significantly associated with development of GCA. Among these, higher levels of IFN-γ (OR 2.37; 95% CI 1.14, 4.92) and monocyte chemotactic protein 3 (MCP3) (OR 4.27; 95% CI 1.26, 14.53) were particularly associated with increased risk of GCA in the subset sampled <8.5 years before diagnosis. Several other proteins known to be important for T cell function were also associated with GCA in these analyses, e.g. CXCL9, IL-2, CD40 and CCL25. CONCLUSION: Elevated IFN-γ levels were found years prior to diagnosis of GCA. T cell activation may precede the clinical onset of GCA.


Assuntos
Arterite de Células Gigantes , Humanos , Arterite de Células Gigantes/complicações , Estudos Prospectivos , Biomarcadores , Inflamação/complicações , Proteínas Sanguíneas
3.
Nucleic Acids Res ; 49(6): 3185-3203, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33693809

RESUMO

Protein methylation occurs primarily on lysine and arginine, but also on some other residues, such as histidine. METTL18 is the last uncharacterized member of a group of human methyltransferases (MTases) that mainly exert lysine methylation, and here we set out to elucidate its function. We found METTL18 to be a nuclear protein that contains a functional nuclear localization signal and accumulates in nucleoli. Recombinant METTL18 methylated a single protein in nuclear extracts and in isolated ribosomes from METTL18 knockout (KO) cells, identified as 60S ribosomal protein L3 (RPL3). We also performed an RPL3 interactomics screen and identified METTL18 as the most significantly enriched MTase. We found that His-245 in RPL3 carries a 3-methylhistidine (3MH; τ-methylhistidine) modification, which was absent in METTL18 KO cells. In addition, both recombinant and endogenous METTL18 were found to be automethylated at His-154, thus further corroborating METTL18 as a histidine-specific MTase. Finally, METTL18 KO cells displayed altered pre-rRNA processing, decreased polysome formation and codon-specific changes in mRNA translation, indicating that METTL18-mediated methylation of RPL3 is important for optimal ribosome biogenesis and function. In conclusion, we have here established METTL18 as the second human histidine-specific protein MTase, and demonstrated its functional relevance.


Assuntos
Biossíntese de Proteínas , Proteínas Metiltransferases/metabolismo , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/metabolismo , Motivos de Aminoácidos , Nucléolo Celular/enzimologia , Células HEK293 , Células HeLa , Histidina/metabolismo , Humanos , Sinais de Localização Nuclear , Proteínas Metiltransferases/química , Processamento Pós-Transcricional do RNA , Proteína Ribossômica L3 , Ribossomos/metabolismo
4.
J Biol Chem ; 297(4): 101130, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34461099

RESUMO

Cells synthesize proteins using 20 standard amino acids and expand their biochemical repertoire through intricate enzyme-mediated post-translational modifications (PTMs). PTMs can either be static and represent protein editing events or be dynamically regulated as a part of a cellular response to specific stimuli. Protein histidine methylation (Hme) was an elusive PTM for over 5 decades and has only recently attracted considerable attention through discoveries concerning its enzymology, extent, and function. Here, we review the status of the Hme field and discuss the implications of Hme in physiological and cellular processes. We also review the experimental toolbox for analysis of Hme and discuss the strengths and weaknesses of different experimental approaches. The findings discussed in this review demonstrate that Hme is widespread across cells and tissues and functionally regulates key cellular processes such as cytoskeletal dynamics and protein translation. Collectively, the findings discussed here showcase Hme as a regulator of key cellular functions and highlight the regulation of this modification as an emerging field of biological research.


Assuntos
Histidina/metabolismo , Proteínas Metiltransferases/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Citoesqueleto/metabolismo , Humanos , Metilação
5.
Nucleic Acids Res ; 48(2): 830-846, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31799605

RESUMO

RNA methylations are essential both for RNA structure and function, and are introduced by a number of distinct methyltransferases (MTases). In recent years, N6-methyladenosine (m6A) modification of eukaryotic mRNA has been subject to intense studies, and it has been demonstrated that m6A is a reversible modification that regulates several aspects of mRNA function. However, m6A is also found in other RNAs, such as mammalian 18S and 28S ribosomal RNAs (rRNAs), but the responsible MTases have remained elusive. 28S rRNA carries a single m6A modification, found at position A4220 (alternatively referred to as A4190) within a stem-loop structure, and here we show that the MTase ZCCHC4 is the enzyme responsible for introducing this modification. Accordingly, we found that ZCCHC4 localises to nucleoli, the site of ribosome assembly, and that proteins involved in RNA metabolism are overrepresented in the ZCCHC4 interactome. Interestingly, the absence of m6A4220 perturbs codon-specific translation dynamics and shifts gene expression at the translational level. In summary, we establish ZCCHC4 as the enzyme responsible for m6A modification of human 28S rRNA, and demonstrate its functional significance in mRNA translation.


Assuntos
Adenosina/análogos & derivados , Metiltransferases/genética , RNA Mensageiro/genética , RNA Ribossômico 28S/genética , Adenosina/química , Adenosina/genética , Catálise , Humanos , Metilação , Metiltransferases/química , Ligação Proteica/genética , RNA Ribossômico 28S/química
6.
PLoS Biol ; 16(2): e2003452, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29444090

RESUMO

Chronic pain is a debilitating problem, and insights in the neurobiology of chronic pain are needed for the development of novel pain therapies. A genome-wide association study implicated the 5p15.2 region in chronic widespread pain. This region includes the coding region for FAM173B, a functionally uncharacterized protein. We demonstrate here that FAM173B is a mitochondrial lysine methyltransferase that promotes chronic pain. Knockdown and sensory neuron overexpression strategies showed that FAM173B is involved in persistent inflammatory and neuropathic pain via a pathway dependent on its methyltransferase activity. FAM173B methyltransferase activity in sensory neurons hyperpolarized mitochondria and promoted macrophage/microglia activation through a reactive oxygen species-dependent pathway. In summary, we uncover a role for methyltransferase activity of FAM173B in the neurobiology of pain. These results also highlight FAM173B methyltransferase activity as a potential therapeutic target to treat debilitating chronic pain conditions.


Assuntos
Dor Crônica/enzimologia , Histona-Lisina N-Metiltransferase/metabolismo , Animais , Cromossomos Humanos Par 5 , Dor Crônica/genética , Feminino , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Células HEK293 , Histona-Lisina N-Metiltransferase/genética , Humanos , Masculino , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Polimorfismo de Nucleotídeo Único , Espécies Reativas de Oxigênio/metabolismo
7.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34769235

RESUMO

NAA10 is a major N-terminal acetyltransferase (NAT) that catalyzes the cotranslational N-terminal (Nt-) acetylation of 40% of the human proteome. Several reports of lysine acetyltransferase (KAT) activity by NAA10 exist, but others have not been able to find any NAA10-derived KAT activity, the latter of which is supported by structural studies. The KAT activity of NAA10 towards hypoxia-inducible factor 1α (HIF-1α) was recently found to depend on the hydroxylation at Trp38 of NAA10 by factor inhibiting HIF-1α (FIH). In contrast, we could not detect hydroxylation of Trp38 of NAA10 in several human cell lines and found no evidence that NAA10 interacts with or is regulated by FIH. Our data suggest that NAA10 Trp38 hydroxylation is not a switch in human cells and that it alters its catalytic activity from a NAT to a KAT.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/metabolismo , Processamento de Proteína Pós-Traducional , Células HEK293 , Células HeLa , Humanos , Hidroxilação , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal E/genética , Triptofano/genética , Triptofano/metabolismo
8.
Molecules ; 25(20)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096668

RESUMO

Phorbazoles are polychlorinated heterocyclic secondary metabolites isolated from a marine sponge and several of these natural products have shown inhibitory activity against cancer cells. In this work, a synthesis of the trichlorinated phorbazole B using late stage electrophilic chlorination was developed. The synthesis relied on the use of an oxazole precursor, which was protected with an iodine in the reactive 4-position, followed by complete chlorination of all pyrrole positions. Attempts to prepare phorbazole A and C, which contain a 3,4-dichlorinated pyrrole, were unsuccessful as the desired chlorination pattern on the pyrrole could not be obtained. The identities of the dichlorinated intermediates and products were determined using NMR techniques including NOESY/ROESY, 1,1-ADEQUATE and high-resolution CLIP-HSQMBC.


Assuntos
Compostos Heterocíclicos/síntese química , Hidrocarbonetos Clorados/síntese química , Compostos Heterocíclicos/química , Hidrocarbonetos Clorados/química , Estrutura Molecular , Estereoisomerismo
9.
Nucleic Acids Res ; 45(14): 8239-8254, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28520920

RESUMO

Many cellular proteins are methylated on lysine residues and this has been most intensively studied for histone proteins. Lysine methylations on non-histone proteins are also frequent, but in most cases the functional significance of the methylation event, as well as the identity of the responsible lysine (K) specific methyltransferase (KMT), remain unknown. Several recently discovered KMTs belong to the so-called seven-ß-strand (7BS) class of MTases and we have here investigated an uncharacterized human 7BS MTase currently annotated as part of the endothelin converting enzyme 2, but which should be considered a separate enzyme. Combining in vitro enzymology and analyzes of knockout cells, we demonstrate that this MTase efficiently methylates K36 in eukaryotic translation elongation factor 1 alpha (eEF1A) in vitro and in vivo. We suggest that this novel KMT is named eEF1A-KMT4 (gene name EEF1AKMT4), in agreement with the recently established nomenclature. Furthermore, by ribosome profiling we show that the absence of K36 methylation affects translation dynamics and changes translation speed of distinct codons. Finally, we show that eEF1A-KMT4 is part of a novel family of human KMTs, defined by a shared sequence motif in the active site and we demonstrate the importance of this motif for catalytic activity.


Assuntos
Fator de Iniciação 1 em Eucariotos/metabolismo , Metiltransferases/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular , Eletroforese em Gel de Poliacrilamida , Fator de Iniciação 1 em Eucariotos/genética , Técnicas de Inativação de Genes , Histona-Lisina N-Metiltransferase , Humanos , Lisina/genética , Lisina/metabolismo , Metilação , Metiltransferases/genética , Filogenia , RNA Mensageiro/genética , Homologia de Sequência de Aminoácidos
10.
Nucleic Acids Res ; 45(8): 4370-4389, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28108655

RESUMO

Lysine methylation is abundant on histone proteins, representing a dynamic regulator of chromatin state and gene activity, but is also frequent on many non-histone proteins, including eukaryotic elongation factor 1 alpha (eEF1A). However, the functional significance of eEF1A methylation remains obscure and it has remained unclear whether eEF1A methylation is dynamic and subject to active regulation. We here demonstrate, using a wide range of in vitro and in vivo approaches, that the previously uncharacterized human methyltransferase METTL21B specifically targets Lys-165 in eEF1A in an aminoacyl-tRNA- and GTP-dependent manner. Interestingly, METTL21B-mediated eEF1A methylation showed strong variation across different tissues and cell lines, and was induced by altering growth conditions or by treatment with certain ER-stress-inducing drugs, concomitant with an increase in METTL21B gene expression. Moreover, genetic ablation of METTL21B function in mammalian cells caused substantial alterations in mRNA translation, as measured by ribosomal profiling. A non-canonical function for eEF1A in organization of the cellular cytoskeleton has been reported, and interestingly, METTL21B accumulated in centrosomes, in addition to the expected cytosolic localization. In summary, the present study identifies METTL21B as the enzyme responsible for methylation of eEF1A on Lys-165 and shows that this modification is dynamic, inducible and likely of regulatory importance.


Assuntos
Lisina/metabolismo , Metiltransferases/genética , Fator 1 de Elongação de Peptídeos/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , Aminoacil-RNA de Transferência/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Regulação da Expressão Gênica , Guanosina Trifosfato/metabolismo , Humanos , Metiltransferases/química , Metiltransferases/metabolismo , Especificidade de Órgãos , Fator 1 de Elongação de Peptídeos/química , Fator 1 de Elongação de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA Mensageiro/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Ratos , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
11.
J Biol Chem ; 292(43): 17950-17962, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-28887308

RESUMO

Lysine methylation is an important and much-studied posttranslational modification of nuclear and cytosolic proteins but is present also in mitochondria. However, the responsible mitochondrial lysine-specific methyltransferases (KMTs) remain largely elusive. Here, we investigated METTL12, a mitochondrial human S-adenosylmethionine (AdoMet)-dependent methyltransferase and found it to methylate a single protein in mitochondrial extracts, identified as citrate synthase (CS). Using several in vitro and in vivo approaches, we demonstrated that METTL12 methylates CS on Lys-395, which is localized in the CS active site. Interestingly, the METTL12-mediated methylation inhibited CS activity and was blocked by the CS substrate oxaloacetate. Moreover, METTL12 was strongly inhibited by the reaction product S-adenosylhomocysteine (AdoHcy). In summary, we have uncovered a novel human mitochondrial KMT that introduces a methyl modification into a metabolic enzyme and whose activity can be modulated by metabolic cues. Based on the established naming nomenclature for similar enzymes, we suggest that METTL12 be renamed CS-KMT (gene name CSKMT).


Assuntos
Citrato (si)-Sintase/metabolismo , Metiltransferases/metabolismo , Proteínas Mitocondriais/metabolismo , Ácido Oxaloacético/metabolismo , S-Adenosil-Homocisteína/metabolismo , Citrato (si)-Sintase/genética , Células HeLa , Humanos , Metilação , Metiltransferases/classificação , Metiltransferases/genética , Proteínas Mitocondriais/classificação , Proteínas Mitocondriais/genética
12.
RNA Biol ; 15(3): 314-319, 2018 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-29447067

RESUMO

Lysine methylation is a frequent post-translational protein modification, which has been intensively studied in the case of histone proteins. Lysine methylations are also found on many non-histone proteins, and one prominent example is eukaryotic elongation factor 1 alpha (eEF1A). Besides its essential role in the protein synthesis machinery, a number of non-canonical functions have also been described for eEF1A, such as regulation of the actin cytoskeleton and the promotion of viral replication. The functional significance of the extensive lysine methylations on eEF1A, as well as the identity of the responsible lysine methyltransferases (KMTs), have until recently remained largely elusive. However, recent discoveries and characterizations of human eEF1A-specific KMTs indicate that lysine methylation of eEF1A can be dynamic and inducible, and modulates mRNA translation in a codon-specific fashion. Here, we give a general overview of eEF1A lysine methylation and discuss its possible functional and regulatory significance, with particular emphasis on newly discovered human KMTs.


Assuntos
Fator de Iniciação 1 em Eucariotos/química , Fator de Iniciação 1 em Eucariotos/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Lisina/química , Citoesqueleto de Actina/metabolismo , Humanos , Metilação , Modelos Moleculares , Conformação Proteica , Processamento de Proteína Pós-Traducional , Replicação Viral
13.
J Biol Chem ; 297(6): 101439, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34839121
14.
Biochem J ; 473(14): 1995-2009, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27407169

RESUMO

Methylation of biomolecules is a frequent biochemical reaction within the cell, and a plethora of highly specific methyltransferases (MTases) catalyse the transfer of a methyl group from S-adenosylmethionine (AdoMet) to various substrates. The posttranslational methylation of lysine residues, catalysed by numerous lysine (K)-specific protein MTases (KMTs), is a very common and important protein modification, which recently has been subject to intense studies, particularly in the case of histone proteins. The majority of KMTs belong to a class of MTases that share a defining 'SET domain', and these enzymes mostly target lysines in the flexible tails of histones. However, the so-called seven-ß-strand (7BS) MTases, characterized by a twisted beta-sheet structure and certain conserved sequence motifs, represent the largest MTase class, and these enzymes methylate a wide range of substrates, including small metabolites, lipids, nucleic acids and proteins. Until recently, the histone-specific Dot1/DOT1L was the only identified eukaryotic 7BS KMT. However, a number of novel 7BS KMTs have now been discovered, and, in particular, several recently characterized human and yeast members of MTase family 16 (MTF16) have been found to methylate lysines in non-histone proteins. Here, we review the status and recent progress on the 7BS KMTs, and discuss these enzymes at the levels of sequence/structure, catalytic mechanism, substrate recognition and biological significance.


Assuntos
Lisina/metabolismo , Metiltransferases/metabolismo , Animais , Histona-Lisina N-Metiltransferase , Humanos , Metilação , Processamento de Proteína Pós-Traducional , Especificidade por Substrato
15.
J Biol Chem ; 289(44): 30499-30510, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25231979

RESUMO

The components of the cellular protein translation machinery, such as ribosomal proteins and translation factors, are subject to numerous post-translational modifications. In particular, this group of proteins is frequently methylated. However, for the majority of these methylations, the responsible methyltransferases (MTases) remain unknown. The human FAM86A (family with sequence similarity 86) protein belongs to a recently identified family of protein MTases, and we here show that FAM86A catalyzes the trimethylation of eukaryotic elongation factor 2 (eEF2) on Lys-525. Moreover, we demonstrate that the Saccharomyces cerevisiae MTase Yjr129c, which displays sequence homology to FAM86A, is a functional FAM86A orthologue, modifying the corresponding residue (Lys-509) in yeast eEF2, both in vitro and in vivo. Finally, Yjr129c-deficient yeast cells displayed phenotypes related to eEF2 function (i.e. increased frameshifting during protein translation and hypersensitivity toward the eEF2-specific drug sordarin). In summary, the present study establishes the function of the previously uncharacterized MTases FAM86A and Yjr129c, demonstrating that these enzymes introduce a functionally important lysine methylation in eEF2. Based on the previous naming of similar enzymes, we have redubbed FAM86A and Yjr129c as eEF2-KMT and Efm3, respectively.


Assuntos
Metiltransferases/genética , Fator 2 de Elongação de Peptídeos/metabolismo , Proteínas Metiltransferases/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Animais , Sequência Conservada , Células HEK293 , Humanos , Metilação , Metiltransferases/metabolismo , Dados de Sequência Molecular , Processamento de Proteína Pós-Traducional , Coelhos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Angew Chem Int Ed Engl ; 54(46): 13630-4, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26457897

RESUMO

A general organocatalytic cross-dienamine activation strategy to produce chiral multifunctionalized norcamphor compounds having a large diversity in substitution pattern is presented. The strategy is based on a Diels-Alder reaction of an amino-activated cyclopentenone reacting with most common classes of electron-deficient olefins, such as nitro-, ester-, amide-, and cyano-substituted olefins, chalcones, conjugated malononitriles, CF3-substituted enones, and fumarates. The corresponding norcamphor derivatives are formed in good yield, excellent enantioselectivities, and with complete diastereoselectivity. Furthermore, it is demonstrated that quaternary stereocenters and spiro norcamphor compounds can be formed with high stereoselectivity. The present development provides a simple, direct, and efficient approach for the preparation of important norcamphor scaffolds.

17.
J Biol Chem ; 288(39): 27752-63, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23921388

RESUMO

Hsp70 proteins constitute an evolutionarily conserved protein family of ATP-dependent molecular chaperones involved in a wide range of biological processes. Mammalian Hsp70 proteins are subject to various post-translational modifications, including methylation, but for most of these, a functional role has not been attributed. In this study, we identified the methyltransferase METTL21A as the enzyme responsible for trimethylation of a conserved lysine residue found in several human Hsp70 (HSPA) proteins. This enzyme, denoted by us as HSPA lysine (K) methyltransferase (HSPA-KMT), was found to catalyze trimethylation of various Hsp70 family members both in vitro and in vivo, and the reaction was stimulated by ATP. Furthermore, we show that HSPA-KMT exclusively methylates 70-kDa proteins in mammalian protein extracts, demonstrating that it is a highly specific enzyme. Finally, we show that trimethylation of HSPA8 (Hsc70) has functional consequences, as it alters the affinity of the chaperone for both the monomeric and fibrillar forms of the Parkinson disease-associated protein α-synuclein.


Assuntos
Metilases de Modificação do DNA/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Biomarcadores/metabolismo , Catálise , Clonagem Molecular , Biologia Computacional , Metilases de Modificação do DNA/química , Células HEK293 , Humanos , Lisina/metabolismo , Espectrometria de Massas , Dados de Sequência Molecular , Fases de Leitura Aberta , Peptídeos/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/metabolismo , alfa-Sinucleína/metabolismo
18.
Biol Blood Marrow Transplant ; 20(10): 1537-43, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24910378

RESUMO

The importance of vitamin D in immunologic processes has recently emerged, but whether it has any impact on the course of allogeneic hematopoietic stem cell transplantation (HSCT) has not been determined. Reports indicate that HSCT recipients, particularly children, often suffer from vitamin D deficiency. This study investigated the role of vitamin D in 123 children undergoing HSCT from 2004 to 2011. Vitamin D (ie, serum calcidiol) was analyzed in collected cryostored samples. Patients were grouped according to pre-HSCT calcidiol level: insufficient (<50 nm/L, n = 38) and sufficient (≥50 nm/L, n = 85). Older children who underwent transplants from January through June and children of Middle Eastern or African origin were more commonly found in the insufficient group. Acute grades II to IV graft-versus-host disease occurred more frequently in the vitamin D sufficient group (47% versus 30%, P = .05), whereas no difference was demonstrated for chronic graft-versus-host disease. The neutrophil granulocytes rose significantly faster in the vitamin D sufficient group. No difference in lymphocyte counts, immunoglobulin levels, or infectious disease burden during the first year post-HSCT were observed. Among children with malignancies, overall survival was significantly better in the sufficient group (87% versus 50%, P = .01). In addition, rejection (0% versus 11%, P = .06) and relapse (4% versus 33%, P = .03) rates were lower in patients with sufficient vitamin D levels. To conclude, vitamin D may have an important impact on the outcome of pediatric HSCT, particularly in patients with malignant disease. Further studies investigating whether vitamin D acts as an immunomodulator or is merely a surrogate marker of patient health or nutritional status are warranted.


Assuntos
Doença Enxerto-Hospedeiro/terapia , Doenças Hematológicas/terapia , Transplante de Células-Tronco Hematopoéticas , Condicionamento Pré-Transplante , Deficiência de Vitamina D/terapia , Vitamina D/sangue , Doença Aguda , Adolescente , Criança , Pré-Escolar , Doença Crônica , Feminino , Seguimentos , Doença Enxerto-Hospedeiro/sangue , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/mortalidade , Doenças Hematológicas/sangue , Doenças Hematológicas/imunologia , Doenças Hematológicas/mortalidade , Humanos , Lactente , Recém-Nascido , Masculino , Agonistas Mieloablativos/uso terapêutico , Prognóstico , Recidiva , Estudos Retrospectivos , Análise de Sobrevida , Transplante Homólogo , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/imunologia , Deficiência de Vitamina D/mortalidade , Adulto Jovem
19.
Langmuir ; 29(39): 12145-53, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24003864

RESUMO

A multicycle Wilhelmy plate method has been developed to investigate wetting properties, liquid sorption, and swelling of porous substrates such as wood. The use of the method is exemplified by studies of wood veneers of Scots pine sapwood and heartwood, which were subjected to repeated immersion and withdrawal in a swelling liquid (water) and in a nonswelling liquid (octane). The swelling liquid changes the sample dimensions during measurements, in particular its perimeter. This, in turn, influences the force registered. A model based on a linear combination of the measured force and final change in sample perimeter is suggested, and validated to elucidate the dynamic perimeter change of wood veneer samples. We show that pine heartwood and pine sapwood differ in several respects in their interaction with water. Pine heartwood showed (i) lower liquid uptake, (ii) lower swelling, (iii) higher contact angle, and (iv) lower level of dissolution of surface active components (extractives) than pine sapwood. We conclude that the method is also suitable for studying wetting properties of other porous and swellable materials. The wettability results were supported by surface chemical analysis using X-ray photoelectron spectroscopy, showing higher extractives and lignin content on heartwood than on sapwood surfaces.

20.
Clin Nephrol ; 80(5): 388-94, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22541686

RESUMO

Pauci-immune renal limited vasculitis (RLV) is a rare and aggressive autoimmune disease. We retrospectively analyzed the renal outcome of 6 children with biopsy proven RLV. Median age at diagnosis was 10.6 years (range 7.1 - 14.5) and the median follow-up was 4.4 years (range 2.3 - 6.6). At diagnosis, 5 patients were given induction therapy (methylprednisolone + cyclophosphamide pulses) followed by maintenance treatment (prednisolone + azathioprine) while 1 patient received maintenance treatment only. After induction, 4 patients either retained or recovered normal renal function, and 1 patient, in whom short-term plasma exchange was prescribed to try to rescue her renal function, became free from dialysis. Repeated biopsy showed no disease activity; however, renal scarring was evident in all renal specimens. At last follow-up, 2 patients had normal renal function, 3 patients had mild renal insufficiency, and 1 patient had advanced renal failure. In addition, 5 patients were treated for hypertension. Our case series suggests that an initial favorable response to immunosuppressive therapy might not necessarily prevent the occurrence of renal scarring and highlights the importance of regular follow-up.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/tratamento farmacológico , Rim/fisiopatologia , Adolescente , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/complicações , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/fisiopatologia , Criança , Feminino , Seguimentos , Humanos , Imunossupressores , Rim/patologia , Masculino , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA