Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 140: 106718, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37566942

RESUMO

Multi-drug resistant bacteria are a major problem in the treatment of infectious diseases, such as pneumonia, meningitis, or even coronavirus disease 2019 (COVID-19). Cationic nanopolymers are a new type of antimicrobial agent with high efficiency. We synthesized and characterized cationic polymer based on 1,4-diazabicyclo [2.2.2] octane (DABCO) and Bis (bromoacetyl)cystamine (BBAC), named poly (DABCO-BBAC) nanoparticles(NPs), and produced 150 nm diameter NPs. The antibacterial activity of poly (DABCO-BBAC) against eight multi drug resistant (MDR) Pseudomonas aeruginosa isolates from human burns, its possible synergistic effect with gentamicin, and the mechanism of action were examined. Poly(DABCO-BBAC) could effectively inhibit and kill bacterial strains at a very low concentration calculated by minimum inhibitory concentration (MIC) assay. Nevertheless, its synergism index with gentamicin showed an indifferent effect. Moreover, transmission electron microscopy and lipid peroxidation assays showed that poly (DABCO-BBAC) distorted and damaged the bacterial cell wall. These results suggest that the poly (DABCO-BBAC) could be an effective antibacterial agent for MDR clinical pathogens.


Assuntos
Queimaduras , COVID-19 , Nanopartículas , Humanos , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Gentamicinas/farmacologia , Testes de Sensibilidade Microbiana
2.
Microvasc Res ; 136: 104172, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33894273

RESUMO

BACKGROUND: VSMC proliferation and migration pathways play important roles in plaque formation in the vessel stenosis and re-stenosis processes. The microRNAs affect the expression of many genes that regulate these cellular processes. The aim of this study was to investigate the effects of miR-181b, miR-204, and miR-599 on the gene and protein expression levels of hematopoietic cell kinase (HCK) in VSMCs. METHODS: miR-181b, miR-204 were predicted for the suppression of HCK in the chemokine signaling pathway using bioinformatics tools. Then, the VSMCs were transfected by PEI-containing microRNAs. The HCK gene and protein expression levels were evaluated using RT-qPCR and Western blotting techniques, respectively. Moreover, the cellular proliferation and migration were evaluated by MTT and scratch assay methods. RESULTS: The miR-181b and miR-204 decreased significantly the HCK gene and (total and phosphorylated) protein expression levels. Also, the miR-599 did not show any significant effects on the HCK gene and protein levels. The data also showed that miR-181b, miR-204, and miR-599 prevent significantly the proliferation and migration of VSMCs. CONCLUSION: The downregulation of HCK by miR-181b and miR-204 suppressed the VSMC proliferation and migration.


Assuntos
Movimento Celular , Proliferação de Células , MicroRNAs/metabolismo , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Proteínas Proto-Oncogênicas c-hck/metabolismo , Células Cultivadas , Regulação para Baixo , Humanos , MicroRNAs/genética , Músculo Liso Vascular/ultraestrutura , Miócitos de Músculo Liso/ultraestrutura , Proteínas Proto-Oncogênicas c-hck/genética , Transdução de Sinais
3.
Cell Mol Neurobiol ; 41(7): 1467-1481, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32594382

RESUMO

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. The main causes of MS disease progression, demyelination, and tissue damage are oxidative stress and mitochondrial dysfunction. Hence, the latter are considered as important therapeutic targets. Recent studies have demonstrated that mesenchymal stem cells (MSCs) possess antioxidative properties and are able to target mitochondrial dysfunction. Therefore, we investigated the effect of transplanting Wharton's jelly-derived MSCs in a demyelination mouse model of MS in which mice were fed cuprizone (CPZ) for 12 weeks. CPZ is a copper chelator that impairs the activity of cytochrome oxidase, decreases oxidative phosphorylation, and produces degenerative changes in oligodendrocytes, leading to toxic demyelination similar to those found in MS patients. Results showed that MSCs caused a significant increase in the percentage of myelinated areas and in the number of myelinated fibers in the corpus callosum of the CPZ + MSC group, compared to the CPZ group, as assessed by Luxol fast blue staining and transmission electron microscopy. In addition, transplantation of MSCs significantly increased the number of oligodendrocytes while decreasing astrogliosis and microgliosis in the corpus callosum of the CPZ + MSC group, evaluated by immunofluorescence. Moreover, the mechanism by which MSCs exert these physiological effects was found to be through abolishing the effect of CPZ on oxidative stress markers and mitochondrial dysfunction. Indeed, malondialdehyde significantly decreased while glutathione and superoxide dismutase significantly increased in CPZ + MSC mice group, in comparison witth the CPZ group alone. Furthermore, cell therapy with MSC transplantation increased the expression levels of mitochondrial biogenesis transcripts PGC1α, NRF1, MFN2, and TFAM. In summary, these results demonstrate that MSCs may attenuate MS by promoting an antioxidant response, reducing oxidative stress, and improving mitochondrial homeostasis.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Remielinização/efeitos dos fármacos , Animais , Cuprizona/farmacologia , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Esclerose Múltipla/metabolismo , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo
4.
Can J Physiol Pharmacol ; 99(12): 1264-1271, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34283933

RESUMO

Nanoparticles (NPs) have many toxic effects on fertility and can prevent successful implantation by affecting the maternal uterine tissue. Herein, by deploying 30 female NMRI mice, the effect of silver NPs on the endometrium and implantation has been investigated. Using spherical silver NPs of a diameter of 18-30 nm at doses of 2 and 4 mg/kg, mice in two groups were treated. Then, female mice mated with male mice. Endometrial tissue was extracted 4.5 days later. On the fourth day of pregnancy, the mice were anesthetized and blood samples were taken from the heart; furthermore, endometrial tissue was isolated and used for molecular tests, inductively coupled plasma, and examination of pinopods. The results revealed that the levels of interleukin 6 (IL-6) and IL-1ß and the accumulation of NPs in endometrial tissue in the group receiving NPs at a dose of 4 mg/kg had a major increase relative to the other two groups (p < 0.05); the group receiving a dose of 4 mg/kg exhibited a decrease in pinopods and microvillus compared with the other two groups. According to the results, NPs can reach the endometrium, suggesting that caution should be exercised due to serious exposure to NPs throughout pregnancy.


Assuntos
Implantação do Embrião/efeitos dos fármacos , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Animais , Relação Dose-Resposta a Droga , Feminino , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Tamanho da Partícula , Gravidez
5.
Cryobiology ; 100: 81-89, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33781804

RESUMO

The vitrification of Germinal Vesicle (immature) oocytes is beneficial for preservation of fertility in cases involving reproductive problems. The use of nanoparticles (NP(s)) as vitrification aid is a novel approach towards improving vitrification efficiency. The efficacy of use of iron oxide (Fe3O4) nanoparticles as vitrification aid is reported in this paper. Immature oocytes from NMRI mice were collected and divided into non-vitrified (nVit), Vitrified (Vit) and Vitrified + NP (Vit+NP) groups. In the Vit+NP group, solutions containing Fe3O4 nanoparticles at three different concentrations (0.004%, 0.008% and 0.016% w/v) were separately added to the vitrification solution and their effects on the vitrification of the oocytes were compared. The concentration that was found to be best performing (0.004% w/v) was used in vitrification studies in subsequent experiments. Mitochondrial function, apoptosis incidence, ultrastructure alteration, nuclear maturity, embryo formation and genes expression (Nanog, Oct4, Cdx2, and Sox2) were evaluated in response to the addition of the nanoparticle solution during vitrification. Nuclear maturity of oocyte and embryo formation increased significantly (P ≤ 0.05) in the vitrified + NP group. Expression of Sox2 also increased significantly in both vitrified and vitrified + NP groups. While there was a significant increase in Oct4 expression in the vitrified group as compared to control, there was no significant difference between vitrified and Vit+NP groups. The expression of Cdx2 decreased significantly (P ≤ 0.05) in the Vit+NP group. From these observations, Fe3O4 nanoparticles could protect immature oocytes from cryodamages, positively affect vitrification and modulate the pluripotency of derived pronuclear-stage embryos.


Assuntos
Nanopartículas de Magnetita , Vitrificação , Animais , Criopreservação/métodos , Fertilização in vitro , Camundongos , Oócitos
6.
J Cell Biochem ; 121(4): 2981-2993, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31724234

RESUMO

Mimicking the structure of extracellular matrix (ECM) of myocardium is necessary for fabrication of functional cardiac tissue. The superparamagnetic iron oxide nanoparticles (SPIONs, Fe3 O4 ), as new generation of magnetic nanoparticles (NPs), are highly intended in biomedical studies. Here, SPION NPs (1 wt%) were synthesized and incorporated into silk-fibroin (SF) electrospun nanofibers to enhance mechanical properties and topography of the scaffolds. Then, the mouse embryonic cardiac cells (ECCs) were seeded on the scaffolds for in vitro studies. The SPION NPs were studied by scanning electron microscope (SEM), X-ray diffraction (XRD), and transmission electron microscope (TEM). SF nanofibers were characterized after incorporation of SPIONs by SEM, TEM, water contact angle measurement, and tensile test. Furthermore, cytocompatibility of scaffolds was confirmed by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. SEM images showed that ECCs attached to the scaffolds with elongated morphologies. Also, the real-time PCR and immunostaining studies approved upregulation of cardiac functional genes in ECCs seeded on the SF/SPION-casein scaffolds including GATA-4, cardiac troponin T, Nkx 2.5, and alpha-myosin heavy chain, compared with the ones in SF. In conclusion, incorporation of core-shells in SF supports cardiac differentiation, while has no negative impact on ECCs' proliferation and self-renewal capacity.


Assuntos
Fibroínas/química , Nanopartículas Magnéticas de Óxido de Ferro , Miocárdio/metabolismo , Nanofibras/química , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Diferenciação Celular , Núcleo Celular/metabolismo , Coração/fisiologia , Camundongos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanocompostos , Estresse Mecânico , Propriedades de Superfície , Resistência à Tração , Difração de Raios X
7.
J Biomed Sci ; 26(1): 70, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31500628

RESUMO

BACKGROUND: Currently available anti-influenza drugs are often associated with limitations such as toxicity and the appearance of drug-resistant strains. Therefore, there is a pressing need for the development of novel, safe and more efficient antiviral agents. In this study, we evaluated the antiviral activity of zinc oxide nanoparticles (ZnO-NPs) and PEGylated zinc oxide nanoparticles against H1N1 influenza virus. METHODS: The nanoparticles were characterized using the inductively coupled plasma mass spectrometry, x-ray diffraction analysis, and electron microscopy. MTT assay was applied to assess the cytotoxicity of the nanoparticles, and anti-influenza activity was determined by TCID50 and quantitative Real-Time PCR assays. To study the inhibitory impact of nanoparticles on the expression of viral antigens, an indirect immunofluorescence assay was also performed. RESULTS: Post-exposure of influenza virus with PEGylated ZnO-NPs and bare ZnO-NPs at the highest non-toxic concentrations could be led to 2.8 and 1.2 log10 TCID50 reduction in virus titer when compared to the virus control, respectively (P < 0.0001). At the highest non-toxic concentrations, the PEGylated and unPEGylated ZnO-NPs led to inhibition rates of 94.6 and 52.2%, respectively, which were calculated based on the viral loads. There was a substantial decrease in fluorescence emission intensity in viral-infected cell treated with PEGylated ZnO-NPs compared to the positive control. CONCLUSIONS: Taken together, our study indicated that PEGylated ZnO-NPs could be a novel, effective, and promising antiviral agent against H1N1 influenza virus infection, and future studies can be designed to explore the exact antiviral mechanism of these nanoparticles.


Assuntos
Antivirais/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Nanopartículas Metálicas , Polietilenoglicóis/farmacologia , Óxido de Zinco/farmacologia , Testes de Sensibilidade Microbiana , Nanomedicina
8.
Pharmacol Res ; 143: 178-185, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30611856

RESUMO

The current interest in cancer research is being shifted from individual therapy to combinatorial therapy. In this contribution, a novel multifunctional nanoplatform comprising alginate nanogel co-loaded with cisplatin and gold nanoparticles (AuNPs) has been firstly developed to combine photothermal therapy and chemotherapy. The antitumor efficacy of the as-prepared nanocomplex was tested against CT26 colorectal tumor model. The nanocomplex showed an improved chemotherapy efficacy than free cisplatin and caused a significantly higher tumor inhibition rate. The in vivo thermometry results indicated that the tumors treated with the nanocomplex had faster temperature rise rate under 532 nm laser irradiation and received dramatically higher thermal doses due to optical absorption properties of AuNPs. The combined action of chemo-photothermal therapy using the nanocomplex dramatically suppressed tumor growth up to 95% of control and markedly prolonged the animal survival rate. Moreover, tumor metabolism was quantified by [18F]FDG (2-deoxy-2-[18F]fluoro-D-glucose)-positron emission tomography (PET) imaging and revealed that the combination of the nanocomplex and laser irradiation have the potential to eradicate microscopic residual tumor to prevent cancer relapse. Therefore, the nanocomplex can afford a potent anticancer efficacy whereby heat and drug can be effectively deliver to the tumor, and at the same time the high dose-associated side effects due to the separate application of chemotherapy and thermal therapy could be potentially reduced.


Assuntos
Antineoplásicos/administração & dosagem , Cisplatino/administração & dosagem , Ouro/administração & dosagem , Hipertermia Induzida , Nanopartículas Metálicas/administração & dosagem , Nanogéis/administração & dosagem , Neoplasias/terapia , Fotoquimioterapia , Alginatos/administração & dosagem , Animais , Linhagem Celular Tumoral , Terapia Combinada , Fluordesoxiglucose F18 , Lasers , Masculino , Camundongos Endogâmicos BALB C , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Neoplasias/patologia , Compostos Radiofarmacêuticos
9.
J Med Internet Res ; 20(4): e147, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29685872

RESUMO

BACKGROUND: Comorbid depression is a significant challenge for safety-net primary care systems. Team-based collaborative depression care is effective, but complex system factors in safety-net organizations impede adoption and result in persistent disparities in outcomes. Diabetes-Depression Care-management Adoption Trial (DCAT) evaluated whether depression care could be significantly improved by harnessing information and communication technologies to automate routine screening and monitoring of patient symptoms and treatment adherence and allow timely communication with providers. OBJECTIVE: The aim of this study was to compare 6-month outcomes of a technology-facilitated care model with a usual care model and a supported care model that involved team-based collaborative depression care for safety-net primary care adult patients with type 2 diabetes. METHODS: DCAT is a translational study in collaboration with Los Angeles County Department of Health Services, the second largest safety-net care system in the United States. A comparative effectiveness study with quasi-experimental design was conducted in three groups of adult patients with type 2 diabetes to compare three delivery models: usual care, supported care, and technology-facilitated care. Six-month outcomes included depression and diabetes care measures and patient-reported outcomes. Comparative treatment effects were estimated by linear or logistic regression models that used generalized propensity scores to adjust for sampling bias inherent in the nonrandomized design. RESULTS: DCAT enrolled 1406 patients (484 in usual care, 480 in supported care, and 442 in technology-facilitated care), most of whom were Hispanic or Latino and female. Compared with usual care, both the supported care and technology-facilitated care groups were associated with significant reduction in depressive symptoms measured by scores on the 9-item Patient Health Questionnaire (least squares estimate, LSE: usual care=6.35, supported care=5.05, technology-facilitated care=5.16; P value: supported care vs usual care=.02, technology-facilitated care vs usual care=.02); decreased prevalence of major depression (odds ratio, OR: supported care vs usual care=0.45, technology-facilitated care vs usual care=0.33; P value: supported care vs usual care=.02, technology-facilitated care vs usual care=.007); and reduced functional disability as measured by Sheehan Disability Scale scores (LSE: usual care=3.21, supported care=2.61, technology-facilitated care=2.59; P value: supported care vs usual care=.04, technology-facilitated care vs usual care=.03). Technology-facilitated care was significantly associated with depression remission (technology-facilitated care vs usual care: OR=2.98, P=.04); increased satisfaction with care for emotional problems among depressed patients (LSE: usual care=3.20, technology-facilitated care=3.70; P=.05); reduced total cholesterol level (LSE: usual care=176.40, technology-facilitated care=160.46; P=.01); improved satisfaction with diabetes care (LSE: usual care=4.01, technology-facilitated care=4.20; P=.05); and increased odds of taking an glycated hemoglobin test (technology-facilitated care vs usual care: OR=3.40, P<.001). CONCLUSIONS: Both the technology-facilitated care and supported care delivery models showed potential to improve 6-month depression and functional disability outcomes. The technology-facilitated care model has a greater likelihood to improve depression remission, patient satisfaction, and diabetes care quality.


Assuntos
Depressão/terapia , Diabetes Mellitus Tipo 2/psicologia , Atenção Primária à Saúde/organização & administração , Comorbidade , Depressão/patologia , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/terapia , Feminino , Humanos , Masculino , Medidas de Resultados Relatados pelo Paciente , Qualidade da Assistência à Saúde , Fatores de Tempo
10.
Eur J Neurosci ; 45(6): 773-784, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27987378

RESUMO

This study describes a new accessible source of neuronal stem cells that can be used in Parkinson's disease cell transplant. The human olfactory bulb contains neural stem cells (NSCs) that are responsible for neurogenesis in the brain and the replacement of damaged cellular components throughout life. NSCs are capable of differentiating into neuronal and glial cells. We isolated NSCs from the olfactory bulb of brain-death donors and differentiated them into dopaminergic neurons. The olfactory bulb tissues obtained were cultured in Dulbecco's modified Eagle's medium/nutrient mixture F12, B27 supplemented with basic fibroblast growth factor, epidermal growth factor and leukemia inhibitory factor. The NSCs and proliferation markers were assessed. The multipotentiality of olfactory bulb NSCs was demonstrated by their capacity to differentiate into neurons, oligodendrocytes and astrocytes. To generate dopaminergic neurons, olfactory bulb NSCs were differentiated in neurobasal medium, supplemented with B27, and treated with sonic hedgehog, fibroblast growth factor 8 and glial cell-derived neurotrophic factor from the 7th to the 21st day, followed by detection of dopaminergic neuronal markers including tyrosine hydroxylase and aromatic l-amino acid decarboxylase. The cells were expanded, established in continuous cell lines and differentiated into the two classical neuronal phenotypes. The percentage of co-positive cells (microtubule-associated protein 2 and tyrosine hydroxylase; aromatic l-amino acid decarboxylase and tyrosine hydroxylase) in the treated cells was significantly higher than in the untreated cells. These results illustrate the existence of multipotent NSCs in the adult human olfactory bulb that are capable of differentiating toward putative dopaminergic neurons in the presence of trophic factors. Taken together, our data encourage further investigations of the possible use of olfactory bulb NSCs as a promising cell-based therapeutic strategy for Parkinson's disease.


Assuntos
Neurônios Dopaminérgicos/citologia , Células-Tronco Neurais/citologia , Neurogênese , Bulbo Olfatório/citologia , Animais , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Células Cultivadas , Neurônios Dopaminérgicos/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Masculino , Oligodendroglia/citologia , Ratos , Ratos Wistar , Tirosina 3-Mono-Oxigenase/metabolismo
11.
Blood Coagul Fibrinolysis ; 35(3): 115-123, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477834

RESUMO

OBJECTIVES: Platelet secretion disorders (PSDs) are a subgroup of platelet function disorders (PFDs) caused by defects in the content or release of platelet granules. These patients have a variable degree of mucocutaneous bleeding tendency. The diagnostic facilities of PSDs are imitated in Iran, even in specialized coagulation laboratories. The present study aims to estimate the frequency of PSDs among patients referred to the Iranian Blood Transfusion Organization (IBTO). METHODS: The research population includes all patients referred to the specialized coagulation laboratory of IBTO and requested platelet function and von Willebrand testing by their physicians. They were recruited between May 2022 and October 2022 if they were not diagnosed as having procoagulant defects, von Willebrand disease (VWD), Glanzmann thrombasthenia (GT), Bernard-Soulier syndrome (BSS), and platelet count <100 × 10 9 (except in the syndromic forms). Patients with a defect in response to at least two agonists in Light transmission aggregometry (LTA), one agonist in the ATP-secretion study, and/or impairment in the expression of CD62P are considered PSDs. RESULTS: Among 121 cases referred to our center over 6 months, 40 patients fulfilled the inclusion and exclusion criteria. Ten patients were diagnosed with PSDs. Six were classified as δ-platelet secretion disorders (δ-PSD), two α-platelet secretion disorders (α-PSD), and two αδ-platelet secretion disorders (αδ-PSD). CONCLUSIONS: The prevalence of PSDs in our population study was 25% (10/40), which seems highly prevalent. Therefore, expanding laboratory approaches to platelet function defects is necessary as a routine in our country.


Assuntos
Transtornos da Coagulação Sanguínea , Transtornos Plaquetários , Trombastenia , Doenças de von Willebrand , Humanos , Irã (Geográfico)/epidemiologia , Laboratórios , Transtornos Plaquetários/diagnóstico , Transtornos Plaquetários/epidemiologia , Transtornos da Coagulação Sanguínea/diagnóstico , Doenças de von Willebrand/metabolismo , Transfusão de Sangue , Plaquetas/metabolismo
12.
Int J Pharm ; 653: 123888, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38342325

RESUMO

The goal of this work was to examine the heat-sensitizing effects of Janus-coated magnetic nanoparticles (JMNPs) as a vehicle for 5-fluorouracil (5-Fu) and Quercetin (Qu) in C6 and OLN-93 cell lines. The cellular uptake of nanoparticles was evaluated using Prussian blue staining and ICP-OES after monolayer culturing of C6 (rat brain cancer cell) and OLN-93 (normal rat brain cell) cells. The cells were treated with free 5-Fu, Qu, and MJNPs loaded with Qu/5-Fu for 24 h, followed by magnetic hyperthermia under an alternating magnetic field (AMF) at a temperature of 43 °C. Using the MTT test and Flow cytometry, the C6 and OLN-93 cells were investigated after being subjected to hyperthermia with and without magnetic nanoparticles. The results of Prussian blue staining confirmed the potential of MJNPs as carriers that facilitate the uptake of drugs by cancer cells. The results showed that the combined application of Qu/5-Fu/MJNPs with hyperthermia significantly increased the amount of ROS production compared to interventions without MJNPs. The therapeutic results demonstrated that the combination of Qu/5-Fu/MJNPs with hyperthermia considerably enhanced the rate of apoptotic and necrotic cell death compared to that of interventions without MJNPs. Furthermore, MTT findings indicated that controlled exposure of Qu/5-Fu/MJNPs to AMF caused a synergistic effect. The advanced Janus magnetic nanoparticles in this study can be proposed as a promising dual drug carrier (Qu/5-Fu) and thermosensitizer platform for dual-modal synergistic cancer therapy.


Assuntos
Ferrocianetos , Hipertermia Induzida , Nanopartículas , Polietilenoglicóis , Polietilenoimina , Ratos , Animais , Nanogéis , Preparações de Ação Retardada , Hipertermia Induzida/métodos , Fluoruracila , Linhagem Celular Tumoral , Quercetina/farmacologia
13.
J Mater Chem B ; 12(24): 5957-5973, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38808630

RESUMO

Doxorubicin (DOX), a chemotherapy drug, has demonstrated limited efficacy against glioblastoma, an aggressive brain tumor with resistance attributed to the blood-brain barrier (BBB). This study aims to overcome this challenge by proposing the targeted delivery of magnetic Janus nanoparticles (MJNPs) functionalized with folic acid ligands, fluorescent dye, and doxorubicin (DOX/MJNPs-FLA). The properties of these nanoparticles were comprehensively evaluated using bio-physiochemical techniques such as Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), zeta potential analysis, high-resolution transmission electron microscopy (HR-TEM), vibrating sample magnetometry (VSM), fluorescence microscopy, MTT assay, hemolysis assay, and liver enzyme level evaluation. Dual-controlled DOX release was investigated under different pH and temperature conditions. Additionally, the impact of DOX/MJNPs-FLA on apoptosis induction in tumor cells, body weight, and survival time of cancerous animals was assessed. The targeted delivery system was assessed using C6 and OLN-93 cell lines as representatives of cancerous and healthy cell lines, respectively, alongside Wistar rat tumor-bearing models. Results from Prussian blue staining and confocal microscopy tests demonstrated the effective targeted internalization of MJNPs-FLA by glioblastoma cells. Additionally, we investigated the biodistribution of the nanoparticles utilizing fluorescence imaging techniques. This enabled us to track the distribution pattern of MJNPs-FLA in vivo, shedding light on their movement and accumulation within the biological system. Furthermore, the combination of chemotherapy and magnetic hyperthermia exhibited enhanced efficacy in inducing apoptosis, as evidenced by the increase of the pro-apoptotic Bax gene and a decrease in the anti-apoptotic Bcl-2 gene. Remarkably, this combination treatment did not cause any hepatotoxicity. This study highlights the potential of DOX/MJNPs-FLA as carriers for therapeutic and diagnostic agents in the context of theranostic applications for the treatment of brain malignancies. Additionally, it demonstrates the promising performance of DOX/MJNPs-FLA in combination treatment through passive and active targeting.


Assuntos
Doxorrubicina , Ácido Fólico , Glioblastoma , Ratos Wistar , Animais , Doxorrubicina/química , Doxorrubicina/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Ratos , Ácido Fólico/química , Concentração de Íons de Hidrogênio , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/química , Nanomedicina Teranóstica , Temperatura , Ligantes , Sistemas de Liberação de Medicamentos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Nanopartículas de Magnetita/química , Apoptose/efeitos dos fármacos , Portadores de Fármacos/química , Masculino , Humanos , Liberação Controlada de Fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos
14.
J Biomed Mater Res B Appl Biomater ; 112(5): e35414, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38733611

RESUMO

Utilizing natural scaffold production derived from extracellular matrix components presents a promising strategy for advancing in vitro spermatogenesis. In this study, we employed decellularized human placental tissue as a scaffold, upon which neonatal mouse spermatogonial cells (SCs) were cultured three-dimensional (3D) configuration. To assess cellular proliferation, we examined the expression of key markers (Id4 and Gfrα1) at both 1 and 14 days into the culture. Our quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis revealed a notable increase in Gfrα1 gene expression, with the 3D culture group exhibiting the highest levels. Furthermore, the relative frequency of Gfrα1-positive cells significantly rose from 38.1% in isolated SCs to 46.13% and 76.93% in the two-dimensional (2D) and 3D culture systems, respectively. Moving forward to days 14 and 35 of the culture period, we evaluated the expression of differentiating markers (Sycp3, acrosin, and Protamine 1). Sycp3 and Prm1 gene expression levels were upregulated in both 2D and 3D cultures, with the 3D group displaying the highest expression. Additionally, acrosin gene expression increased notably within the 3D culture. Notably, at the 35-day mark, the percentage of Prm1-positive cells in the 3D group (36.4%) significantly surpassed that in the 2D group (10.96%). This study suggests that the utilization of placental scaffolds holds significant promise as a bio-scaffold for enhancing mouse in vitro spermatogenesis.


Assuntos
Diferenciação Celular , Proliferação de Células , Placenta , Animais , Feminino , Camundongos , Masculino , Humanos , Placenta/citologia , Placenta/metabolismo , Gravidez , Espermatogônias/citologia , Espermatogônias/metabolismo , Alicerces Teciduais/química , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia
15.
Sci Rep ; 13(1): 22358, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102193

RESUMO

Malignant neoplasms are one of the main causes of death, especially in children, on a global scale, despite strenuous efforts made at advancing both diagnostic and therapeutic modalities. In this regard, a new nanocarrier Vincristine (VCR)-loaded Pluronic f127 polymer-coated magnetic nanoparticles conjugated with folic acid and transferrin (PMNP-VCR-FA-TF) were synthesized and characterized by various methods. The cytotoxicity of these nanoparticles was evaluated in vitro and ex vivo conditions. The in vitro anti-tumor effect of the nanoparticles was evaluated by colony formation assay (CFA) and reactive oxygen species (ROS) in Y79 cell line. The results showed that nanoparticles with two ligands conferred greater toxicity toward Y79 cancer cells than ARPE19 normal cells. Under an alternating magnetic field (AMF), these nanoparticles demonstrated a high specific absorption rate. The CFA and ROS results indicated that the AMF in combination with PMNP-VCR-FA-TF conferred the highest cytotoxicity toward Y79 cells compared with other groups (P < 0.05). PMNP-VCR-FA-TF could play an important role in converting externally applied radiofrequency energy into heat in cancer cells. The present study confirmed that dual targeting chemo-hyperthermia using PMNP-VCR-FA-TF was significantly more effective than hyperthermia or chemotherapy alone, providing a promising platform for precision drug delivery as an essential component in the chemotherapy of retinoblastoma.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Nanopartículas , Neoplasias da Retina , Retinoblastoma , Criança , Humanos , Retinoblastoma/tratamento farmacológico , Espécies Reativas de Oxigênio , Ácido Fólico , Transferrina , Vincristina/farmacologia , Vincristina/uso terapêutico , Neoplasias da Retina/tratamento farmacológico , Linhagem Celular Tumoral
16.
Curr Med Mycol ; 9(3): 38-44, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38361962

RESUMO

Background and Purpose: Regarding the wide-spectrum antimicrobial effects of curcumin and silver, this study aimed to evaluate the antifungal activity of green-synthesized curcumin-coated silver nanoparticles (Cur-Ag NPs) against a set of Candida and Aspergillus species. Materials and Methods: Cur-Ag NPs were synthesized by mixing 200 µL of curcumin solution (40 mM) and 15 mL of deionized water. The mixture was stirred for 3-5 min, followed by the addition of 2.5 mL of silver nitrate solution (2.5 mM). The resulting solution was incubated for 3 days. Antifungal susceptibility of 30 fungal isolates of Aspergillus and Candida to fluconazole and itraconazole, as well as the activity of Cur-Ag NPs against the isolates, were determined, both alone and in combination, using broth microdilution according to the Clinical and Laboratory Standards Institute guidelines. Results: Cur-Ag NPs demonstrated promising antifungal activity, particularly against Candida species. The geometric mean value of the minimum inhibitory concentration of Cur-Ag NPs was significantly lower than that of fluconazole for all the studied fungi. Similarly, it was lower than those of itraconazole in C. albicans and A. fumigatus. The minimum fungicidal concentrations of Cur-Ag NPs were markedly better than those of fluconazole but still inferior to those of itraconazole. Conclusion: Cur-Ag NPs demonstrated indisputable antifungal activity and great potential that can be harnessed to combat fungal infections, particularly those caused by azole-resistant strains of Aspergillus and Candida.

17.
Int J Biol Macromol ; 235: 123801, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36842740

RESUMO

Spermatogenesis refers to the differentiation of the spermatogonial stem cells (SSCs) located in the base seminiferous tubules into haploid spermatozoa. Prerequisites for in vitro spermatogenesis include an extracellular matrix (ECM), paracrine factors, and testicular somatic cells which play a supporting role for SSCs. Thus, the present study evaluated the potential of co-culturing Sertoli cells and SSCs embedded in a hybrid hydrogel of agarose and laminin, the main components of the ECM. Following the three-week conventional culture of human testicular cells, the cells were cultured in agarose hydrogel or agarose/laminin one (hybrid) for 74 days. Then, immunocytochemistry, real-time PCR, electron microscopy, and morphological staining methods were applied to analyze the presence of SSCs, as well as the other cells of the different stages of spermatogenesis. Based on the results, the colonies with positive spermatogenesis markers were observed in both culture systems. The existence of the cells of all three phases of spermatogenesis (spermatogonia, meiosis, and spermiogenesis) was confirmed in the two groups, while morphological spermatozoa were detected only in the hybrid hydrogel group. Finally, a biologically improved 3D matrix can support all the physiological activities of SSCs such as survival, proliferation, and differentiation.


Assuntos
Hidrogéis , Laminina , Masculino , Humanos , Laminina/farmacologia , Sefarose , Hidrogéis/farmacologia , Espermatozoides , Espermatogênese , Diferenciação Celular/fisiologia , Células-Tronco
18.
J Arthropod Borne Dis ; 17(4): 299-320, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38868671

RESUMO

Background: Current medications especially the pentavalent antimonial compounds have been used as the first line treatment of cutaneous leishmaniasis (CL), but they have limitations due to serious side effects such as drug resistance, cardio and nephrotoxicity, and high costs. Hence, the demand to find more usable drugs is evident. Synthesis and development of natural, effective, biocompatible, and harmless compounds against Leishmania major is the principal priority of this study. Methods: By electrospinning method, a new type of nanofiber were synthesized from royal jelly and propolis with different ratios. Nanofibers were characterized by Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), Thermogravimetric Analysis (TGA), Contact angle, and Fourier-transform infrared spectroscopy (FTIR). The Half-maximal inhibitory concentration (IC50), Half-maximal effective concentration (EC50) and the 50% cytotoxic concentration (CC50) for different concentrations of nanofibers were determined using quantitative calorimetric methods. Inductively coupled plasma-optical emission spectrometry (ICP-OES) and flow cytometry were performed as complementary tests. Results: The results showed that the proposed formulas provide a new achievement that, despite the significant killing activity on L. major, has negligible cytotoxicity on the host cells. Royal jelly nanofibers have significantly shown the best 72 hours results (IC50= 35 µg/ml and EC50=16.4 µg/ml) and the least cytotoxicity. Conclusion: This study presents a great challenge to introduce a new low-cost treatment method for CL, accelerate wound healing, and reduce scarring with minimal side effects and biocompatible materials. Royal jelly and propolis nanofibers significantly inhibit the growth of L. major in-vitro.

19.
Cell J ; 24(11): 697-704, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36377220

RESUMO

OBJECTIVE: One of the challenges in gene therapy is the transfer of the gene to the target cell. MicroRNAs (miRNAs) regulate gene expression after transcription by binding directly to the messenger and play a vital role in cell behaviors and the pathogenesis of some diseases. This study was aimed at developing poly (lactic-co-glycolic acid) (PLGA)- based nanoparticles (NPs) for gene delivery to endometriotic cyst stromal cells (ECSCs). MATERIALS AND METHODS: In this experimental study, endometriosis cells were isolated from women with severe endometriosis (DIE) and digested by the enzymatic method (40 µg/ml DNAase I and 300 µg/ml collagenase type 3). PLGA-based NPs were synthesized and characterized. The size of sole PLGA NPs and PLGA/miRNA were 60 ± 4 nm and 70 ± 5.1 nm respectively. Poly lactic-co-glycolic-based NPs were used as vector carriers for miRNA 503 transfection in endometriosis cells. The cells were divided into the five groups of control and four doses (25, 50, 75, and 100 µm) of miRNA 503/PLGA at 12, 24, 48, and 72 hours. Viability and apoptosis were evaluated by the MTT assay and Annexin Kits. Data were analyzed by one-way analysis of variance. RESULTS: The results show that the size of PLGA/miRNA complex with dynamic light scattering (DLS) was 70 ± 5.1 nm and zeta potential values of the PLGA/PEI/miRNA complexes were 27.9 mV. Based on the MTT assay results, the optimal dose of miRNA 503/PLGA was 75 µm, at which the viability of ECSCs was 52.6% ± 1.2 (P≤0.001), and the optimal time was 48 hours. The apoptotic rates of ECSCs treated with PLGA/miRNA503 (34.75 ± 4.9%) were significantly higher than those of ECSCs treated with PLGA alone (3.35 ± 2.58%, P≤0.01). CONCLUSION: Cell death increased with increasing the concentration of miRNA; thus, it can be suggested as a treatment for endometriosis.

20.
Iran J Pathol ; 17(3): 285-293, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247507

RESUMO

Background & Objective: This study aims to isolate a lytic bacteriophage against planktonic Enterococcus faecalis V583 culture and evaluate its ability to disrupt and inhibit biofilm. Methods: An anti-E. faecalis phage was isolated from sewage and visualized by electron microscopy, the vB_EfsS_V583 (V583) host range was determined by spot test on 13 E. faecalis clinical strains. Inhibition and degradation experiments were designed to investigate the effect of phage on biofilm. In the inhibition and degradation assay, biofilms were formed in the presence and absence of phage, respectively. Finally, crystal violet method tested the effect of phage on biofilm. Results: Phage V583 belongs to the Siphoviridae family and can infect all E. faecalis strains. Antibacterial activity has been shown to degrade and inhibit biofilm produced by V583. The study results showed that phage v583 is more efficient in biofilm inhibition than biofilm degradation. In both assays, phage-treated wells' absorption is less than untreated wells. These results were confirmed by Colony-forming unit reduction in the treated biofilm. Conclusion: The anti-biofilm activity showed that phage therapy using phage V583 might be an alternative tool to remove E. faecalis biofilms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA