Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(10): 5423-5437, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38742636

RESUMO

Oral delivery is the most widely used and convenient route of administration of medicine. However, oral administration of hydrophilic macromolecules is commonly limited by low intestinal permeability and pre-systemic degradation in the gastrointestinal (GI) tract. Overcoming some of these challenges allowed emergence of oral dosage forms of peptide-based drugs in clinical settings. Antisense oligonucleotides (ASOs) have also been investigated for oral administration but despite the recent progress, the bioavailability remains low. Given the advancement with highly potent and durable trivalent N-acetylgalactosamine (GalNAc)-conjugated small interfering RNAs (siRNAs) via subcutaneous (s.c.) injection, we explored their activities after oral administration. We report robust RNA interference (RNAi) activity of orally administrated GalNAc-siRNAs co-formulated with permeation enhancers (PEs) in rodents and non-human primates (NHPs). The relative bioavailability calculated from NHP liver exposure was <2.0% despite minimal enzymatic degradation in the GI. To investigate the impact of oligonucleotide size on oral delivery, highly specific GalNAc-conjugated single-stranded oligonucleotides known as REVERSIRs with different lengths were employed and their activities for reversal of RNAi effect were monitored. Our data suggests that intestinal permeability is highly influenced by the size of oligonucleotides. Further improvements in the potency of siRNA and PE could make oral delivery of GalNAc-siRNAs as a practical solution.


Assuntos
Acetilgalactosamina , RNA Interferente Pequeno , Animais , Acetilgalactosamina/química , Acetilgalactosamina/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/farmacocinética , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Administração Oral , Camundongos , Ratos , Interferência de RNA , Masculino , Disponibilidade Biológica , Humanos , Ratos Sprague-Dawley , Macaca fascicularis , Fígado/metabolismo , Macaca mulatta
2.
Nucleic Acids Res ; 50(3): 1221-1240, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34268578

RESUMO

A critical challenge for the successful development of RNA interference-based therapeutics therapeutics has been the enhancement of their in vivo metabolic stability. In therapeutically relevant, fully chemically modified small interfering RNAs (siRNAs), modification of the two terminal phosphodiester linkages in each strand of the siRNA duplex with phosphorothioate (PS) is generally sufficient to protect against exonuclease degradation in vivo. Since PS linkages are chiral, we systematically studied the properties of siRNAs containing single chiral PS linkages at each strand terminus. We report an efficient and simple method to introduce chiral PS linkages and demonstrate that Rp diastereomers at the 5' end and Sp diastereomers at the 3' end of the antisense siRNA strand improved pharmacokinetic and pharmacodynamic properties in a mouse model. In silico modeling studies provide mechanistic insights into how the Rp isomer at the 5' end and Sp isomer at the 3' end of the antisense siRNA enhance Argonaute 2 (Ago2) loading and metabolic stability of siRNAs in a concerted manner.


Assuntos
Organofosfatos , RNA Interferente Pequeno , Animais , Isomerismo , Camundongos , Interferência de RNA , Estabilidade de RNA , RNA de Cadeia Dupla , RNA Interferente Pequeno/metabolismo
3.
Nucleic Acids Res ; 50(12): 6656-6670, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35736224

RESUMO

Preclinical mechanistic studies have pointed towards RNA interference-mediated off-target effects as a major driver of hepatotoxicity for GalNAc-siRNA conjugates. Here, we demonstrate that a single glycol nucleic acid or 2'-5'-RNA modification can substantially reduce small interfering RNA (siRNA) seed-mediated binding to off-target transcripts while maintaining on-target activity. In siRNAs with established hepatotoxicity driven by off-target effects, these novel designs with seed-pairing destabilization, termed enhanced stabilization chemistry plus (ESC+), demonstrated a substantially improved therapeutic window in rats. In contrast, siRNAs thermally destabilized to a similar extent by the incorporation of multiple DNA nucleotides in the seed region showed little to no improvement in rat safety suggesting that factors in addition to global thermodynamics play a role in off-target mitigation. We utilized the ESC+ strategy to improve the safety of ALN-HBV, which exhibited dose-dependent, transient and asymptomatic alanine aminotransferase elevations in healthy volunteers. The redesigned ALN-HBV02 (VIR-2218) showed improved specificity with comparable on-target activity and the program was reintroduced into clinical development.


Assuntos
RNA Interferente Pequeno , Animais , Ratos , RNA Interferente Pequeno/genética
4.
J Am Chem Soc ; 145(36): 19691-19706, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37638886

RESUMO

Chemical modifications are necessary to ensure the metabolic stability and efficacy of oligonucleotide-based therapeutics. Here, we describe analyses of the α-(l)-threofuranosyl nucleic acid (TNA) modification, which has a shorter 3'-2' internucleotide linkage than the natural DNA and RNA, in the context of small interfering RNAs (siRNAs). The TNA modification enhanced nuclease resistance more than 2'-O-methyl or 2'-fluoro ribose modifications. TNA-containing siRNAs were prepared as triantennary N-acetylgalactosamine conjugates and were tested in cultured cells and mice. With the exceptions of position 2 of the antisense strand and position 11 of the sense strand, the TNA modification did not inhibit the activity of the RNA interference machinery. In a rat toxicology study, TNA placed at position 7 of the antisense strand of the siRNA mitigated off-target effects, likely due to the decrease in the thermodynamic binding affinity relative to the 2'-O-methyl residue. Analysis of the crystal structure of an RNA octamer with a single TNA on each strand showed that the tetrose sugar adopts a C4'-exo pucker. Computational models of siRNA antisense strands containing TNA bound to Argonaute 2 suggest that TNA is well accommodated in the region kinked by the enzyme. The combined data indicate that the TNA nucleotides are promising modifications expected to increase the potency, duration of action, and safety of siRNAs.


Assuntos
Ácidos Nucleicos , Animais , Camundongos , Ratos , RNA Interferente Pequeno , Nucleotídeos , Interferência de RNA , Acetilgalactosamina
5.
Chemistry ; 29(35): e202300146, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37040130

RESUMO

Azo compounds are efficient electron acceptors. Upon one-electron reduction they generally isomerize forming the thermodynamically most stable radical anion. Herein we show that the size of the central ring in 1,2-diazocines and diazonines has a ruling influence on the configuration of the one-electron reduced species. Markedly, diazonines, which bear a central nine membered heterocycle, show light-induced E/Z isomerization, but retain the configuration of the diazene N=N moiety upon one-electron reduction. Accordingly, E/Z isomerization is not induced by reduction.


Assuntos
Compostos Azo , Elétrons , Oxidantes
6.
Nucleic Acids Res ; 49(19): 10851-10867, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34648028

RESUMO

We recently reported that RNAi-mediated off-target effects are important drivers of the hepatotoxicity observed for a subset of GalNAc-siRNA conjugates in rodents, and that these findings could be mitigated by seed-pairing destabilization using a single GNA nucleotide placed within the seed region of the guide strand. Here, we report further investigation of the unique and poorly understood GNA/RNA cross-pairing behavior to better inform GNA-containing siRNA design. A reexamination of published GNA homoduplex crystal structures, along with a novel structure containing a single (S)-GNA-A residue in duplex RNA, indicated that GNA nucleotides universally adopt a rotated nucleobase orientation within all duplex contexts. Such an orientation strongly affects GNA-C and GNA-G but not GNA-A or GNA-T pairing in GNA/RNA heteroduplexes. Transposition of the hydrogen-bond donor/acceptor pairs using the novel (S)-GNA-isocytidine and -isoguanosine nucleotides could rescue productive base-pairing with the complementary G or C ribonucleotides, respectively. GalNAc-siRNAs containing these GNA isonucleotides showed an improved in vitro activity, a similar improvement in off-target profile, and maintained in vivo activity and guide strand liver levels more consistent with the parent siRNAs than those modified with isomeric GNA-C or -G, thereby expanding our toolbox for the design of siRNAs with minimized off-target activity.


Assuntos
Adenosina/química , Citidina/química , Glicóis/química , Guanosina/química , Oligorribonucleotídeos/química , RNA de Cadeia Dupla/química , RNA Interferente Pequeno/química , Acetilgalactosamina , Oxirredutases do Álcool/antagonistas & inibidores , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Animais , Pareamento de Bases , Células COS , Chlorocebus aethiops , Dimetilformamida/análogos & derivados , Dimetilformamida/química , Etilaminas/química , Feminino , Hepatócitos/citologia , Hepatócitos/metabolismo , Ligação de Hidrogênio , Camundongos , Camundongos Endogâmicos C57BL , Oligorribonucleotídeos/genética , Oligorribonucleotídeos/metabolismo , Compostos Organofosforados/química , Pré-Albumina/antagonistas & inibidores , Pré-Albumina/genética , Pré-Albumina/metabolismo , Cultura Primária de Células , Estabilidade de RNA , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
7.
Nucleic Acids Res ; 49(18): 10250-10264, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34508350

RESUMO

In order to achieve efficient therapeutic post-transcriptional gene-silencing mediated by the RNA interference (RNAi) pathway, small interfering RNAs (siRNAs) must be chemically modified. Several supra-RNA structures, with the potential to stabilize siRNAs metabolically have been evaluated for their ability to induce gene silencing, but all have limitations or have not been explored in therapeutically relevant contexts. Covalently closed circular RNA transcripts are prevalent in eukaryotes and have potential as biomarkers and disease targets, and circular RNA mimics are being explored for use as therapies. Here we report the synthesis and evaluation of small circular interfering RNAs (sciRNAs). To synthesize sciRNAs, a sense strand functionalized with the trivalent N-acetylgalactosamine (GalNAc) ligand and cyclized using 'click' chemistry was annealed to an antisense strand. This strategy was used for synthesis of small circles, but could also be used for synthesis of larger circular RNA mimics. We evaluated various sciRNA designs in vitro and in vivo. We observed improved metabolic stability of the sense strand upon circularization and off-target effects were eliminated. The 5'-(E)-vinylphosphonate modification of the antisense strand resulted in GalNAc-sciRNAs that are potent in vivo at therapeutically relevant doses. Physicochemical studies and NMR-based structural analysis, together with molecular modeling studies, shed light on the interactions of this novel class of siRNAs, which have a partial duplex character, with the RNAi machinery.


Assuntos
Inativação Gênica , Interferência de RNA , RNA Circular , RNA Interferente Pequeno , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL
8.
J Am Chem Soc ; 144(32): 14517-14534, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35921401

RESUMO

Although 2'-deoxy-2'-α-F-2'-ß-C-methyl (2'-F/Me) uridine nucleoside derivatives are a successful class of antiviral drugs, this modification had not been studied in oligonucleotides. Herein, we demonstrate the facile synthesis of 2'-F/Me-modified pyrimidine phosphoramidites and their subsequent incorporation into oligonucleotides. Despite the C3'-endo preorganization of the parent nucleoside, a single incorporation into RNA or DNA resulted in significant thermal destabilization of a duplex due to unfavorable enthalpy, likely resulting from steric effects. When located at the terminus of an oligonucleotide, the 2'-F/Me modification imparted more resistance to degradation than the corresponding 2'-fluoro nucleotides. Small interfering RNAs (siRNAs) modified at certain positions with 2'-F/Me had similar or better silencing activity than the parent siRNAs when delivered via a lipid nanoparticle formulation or as a triantennary N-acetylgalactosamine conjugate in cells and in mice. Modification in the seed region of the antisense strand at position 6 or 7 resulted in an activity equivalent to the parent in mice. Additionally, placement of the antisense strand at position 7 mitigated seed-based off-target effects in cell-based assays. When the 2'-F/Me modification was combined with 5'-vinyl phosphonate, both E and Z isomers had silencing activity comparable to the parent. In combination with other 2'-modifications such as 2'-O-methyl, the Z isomer is detrimental to silencing activity. Presumably, the equivalence of 5'-vinyl phosphonate isomers in the context of 2'-F/Me is driven by the steric and conformational features of the C-methyl-containing sugar ring. These data indicate that 2'-F/Me nucleotides are promising tools for nucleic acid-based therapeutic applications to increase potency, duration, and safety.


Assuntos
Organofosfonatos , Nucleotídeos de Pirimidina , Animais , Lipossomos , Camundongos , Modelos Moleculares , Nanopartículas , Conformação de Ácido Nucleico , Nucleosídeos , Nucleotídeos , Oligonucleotídeos , Fosfatos , Interferência de RNA , RNA Interferente Pequeno/genética
9.
Drug Metab Dispos ; 50(6): 781-797, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34154993

RESUMO

Conjugation of oligonucleotide therapeutics, including small interfering RNAs (siRNAs) or antisense oligonucleotides, to N-acetylgalactosamine (GalNAc) ligands has become the primary strategy for hepatocyte-targeted delivery, and with the recent approvals of GIVLAARI (givosiran) for the treatment of acute hepatic porphyria, OXLUMO (lumasiran) for the treatment of primary hyperoxaluria, and Leqvio (inclisiran) for the treatment of hypercholesterolemia, the technology has been well validated clinically. Although much knowledge has been gained over decades of development, there is a paucity of published literature on the drug metabolism and pharmacokinetic properties of GalNAc-siRNA. With this in mind, the goals of this minireview are to provide an aggregate analysis of these nonclinical absorption, distribution, metabolism, and excretion (ADME) data to build confidence on the translation of these properties to human. Upon subcutaneous administration, GalNAc-conjugated siRNAs are quickly distributed to the liver, resulting in plasma pharmacokinetic (PK) properties that reflect rapid elimination through asialoglycoprotein receptor-mediated uptake from circulation into hepatocytes. These studies confirm that liver PK, including half-life and, most importantly, siRNA levels in RNA-induced silencing complex in hepatocytes, are better predictors of pharmacodynamics (PD) than plasma PK. Several in vitro and in vivo nonclinical studies were conducted to characterize the ADME properties of GalNAc-conjugated siRNAs. These studies demonstrate that the PK/PD and ADME properties of GalNAc-conjugated siRNAs are highly conserved across species, are largely predictable, and can be accurately scaled to human, allowing us to identify efficacious and safe clinical dosing regimens in the absence of human liver PK profiles. SIGNIFICANCE STATEMENT: Several nonclinical ADME studies have been conducted in order to provide a comprehensive overview of the disposition and elimination of GalNAc-conjugated siRNAs and the pharmacokinetic/pharmacodynamic translation between species. These studies demonstrate that the ADME properties of GalNAc-conjugated siRNAs are well correlated and predictable across species, building confidence in the ability to extrapolate to human.


Assuntos
Acetilgalactosamina , Porfirias Hepáticas , Acetilgalactosamina/farmacocinética , Receptor de Asialoglicoproteína/metabolismo , Hepatócitos/metabolismo , Humanos , Porfirias Hepáticas/metabolismo , RNA Interferente Pequeno/genética
10.
Anal Bioanal Chem ; 414(3): 1217-1225, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34240229

RESUMO

High per- and polyfluorinated alkyl substance (PFAS) concentrations have been detected in agricultural soils in Southwest Germany. Discharges of PFAS-contaminated paper sludge and compost are suspected to be the cause of the contamination. Perfluorinated carboxylic acids (PFCAs) have been detected also in groundwater, drinking water, and plants in this area. Recently, previously unknown compounds have been identified by high-resolution mass spectrometry (HRMS). Major contaminants were polyfluorinated dialkylated phosphate esters (diPAPs) and N-ethyl perfluorooctane sulfonamide ethanol-based phosphate diester (diSAmPAP). In this study, HRMS screening for PFAS was applied to 14 soil samples from the contaminated area and 14 impregnated paper samples which were from a similar period than the contamination. The paper samples were characterized by diPAPs (from 4:2/6:2 to 12:2/12:2), fluorotelomer mercapto alkyl phosphates (FTMAPs; 6:2/6:2 to 10:2/10:2), and diSAmPAP. In soil samples, diPAPs and their transformation products (TPs) were the major contaminants, but also FTMAPs, diSAmPAP, and their TPs occurred. The distribution patterns of the carbon chain lengths of the precursor PFAS in soil samples were shown to resemble those in paper samples. This supports the hypothesis that paper sludge is a major source of contamination. The presence of major degradation products like PFCAs, FTSAs, or PFOS and their distribution of carbon chain lengths indicate the activity of biotic or abiotic degradation processes and selective leaching processes from the upper soil horizons.

11.
Conscious Cogn ; 101: 103301, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35427846

RESUMO

Human visual perception is efficient, flexible and context-sensitive. The Bayesian brain view explains this with probabilistic perceptual inference integrating prior experience and knowledge through top-down influences. Advances in machine learning, such as Artificial Neural Networks (ANNs), have enabled considerable progress in computer vision. Unlike humans, these networks do not yet adaptively draw on meaningful and task-relevant contextual cues and prior knowledge. We propose ideas to better align human and computer vision, applied to facial expression recognition. We review evidence of knowledge-augmented and context-sensitive face perception in humans and approaches trying to leverage such sources of information in computer vision. We discuss how both fields can establish an epistemic loop: Redesigning synthetic systems with inspiration from the Bayesian brain-framework could make networks more flexible and useful for human-machine interaction. In turn, employing ANNs as scientific tools will widen the scope of empirical research into human knowledge-augmented perception.


Assuntos
Reconhecimento Facial , Inteligência Artificial , Teorema de Bayes , Encéfalo , Humanos , Percepção Visual
12.
Mol Ther ; 29(6): 2053-2066, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33601052

RESUMO

RNA interference (RNAi) offers the potential to treat disease at the earliest onset by selectively turning off the expression of target genes, such as intracellular oncogenes that drive cancer growth. However, the development of RNAi therapeutics as anti-cancer drugs has been limited by both a lack of efficient and target cell-specific delivery systems and the necessity to overcome numerous intracellular barriers, including serum/lysosomal instability, cell membrane impermeability, and limited endosomal escape. Here, we combine two technologies to achieve posttranscriptional gene silencing in tumor cells: Centyrins, alternative scaffold proteins binding plasma membrane receptors for targeted delivery, and small interfering RNAs (siRNAs), chemically modified for high metabolic stability and potency. An EGFR Centyrin known to internalize in EGFR-positive tumor cells was site-specifically conjugated to a beta-catenin (CTNNb1) siRNA and found to drive potent and specific target knockdown by free uptake in cell culture and in mice inoculated with A431 tumor xenografts (EGFR amplified). The generalizability of this approach was further demonstrated with Centyrins targeting multiple receptors (e.g., BCMA, PSMA, and EpCAM) and siRNAs targeting multiple genes (e.g., CD68, KLKb1, and SSB1). Moreover, by installing multiple conjugation handles, two different siRNAs were fused to a single Centyrin, and the conjugate was shown to simultaneously silence two different targets. Finally, by specifically pairing EpCAM-binding Centyrins that exhibited optimized internalization profiles, we present data showing that an EpCAM Centyrin CTNNb1 siRNA conjugate suppressed tumor cell growth of a colorectal cancer cell line containing an APC mutation but not cells with normal CTNNb1 signaling. Overall, these data demonstrate the potential of Centyrin-siRNA conjugates to target cancer cells and silence oncogenes, paving the way to a new class of anticancer drugs.


Assuntos
Técnicas de Transferência de Genes , Interferência de RNA , RNA Interferente Pequeno/genética , Animais , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Inativação Gênica , Genes erbB-1 , Terapia Genética , Humanos , Ligantes , Camundongos , RNA Mensageiro , RNA Interferente Pequeno/administração & dosagem , Tenascina/genética , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/genética
13.
Nucleic Acids Res ; 48(10): 5281-5293, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32347936

RESUMO

Gene silencing by RNA interference (RNAi) has emerged as a powerful treatment strategy across a potentially broad range of diseases. Tailoring siRNAs to silence genes vital for cancer cell growth and function could be an effective treatment, but there are several challenges which must be overcome to enable their use as a therapeutic modality, among which efficient and selective delivery to cancer cells remains paramount. Attempts to use antibodies for siRNA delivery have been reported but these strategies use either nonspecific conjugation resulting in mixtures, or site-specific methods that require multiple steps, introduction of mutations, or use of enzymes. Here, we report a method to generate antibody-siRNA (1:2) conjugates (ARCs) that are structurally defined and easy to assemble. This ARC platform is based on engineered dual variable domain (DVD) antibodies containing a natural uniquely reactive lysine residue for site-specific conjugation to ß-lactam linker-functionalized siRNA. The conjugation is efficient, does not compromise the affinity of the parental antibody, and utilizes chemically stabilized siRNA. For proof-of-concept, we generated DVD-ARCs targeting various cell surface antigens on multiple myeloma cells for the selective delivery of siRNA targeting ß-catenin (CTNNB1). A set of BCMA-targeting DVD-ARCs at concentrations as low as 10 nM revealed significant CTNNB1 mRNA and protein knockdown.


Assuntos
Região Variável de Imunoglobulina/química , Interferência de RNA , RNA Interferente Pequeno/química , Anticorpos/química , Linhagem Celular Tumoral , Humanos , RNA Interferente Pequeno/farmacocinética , beta Catenina/genética
14.
Nucleic Acids Res ; 48(21): 11827-11844, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-32808038

RESUMO

One hallmark of trivalent N-acetylgalactosamine (GalNAc)-conjugated siRNAs is the remarkable durability of silencing that can persist for months in preclinical species and humans. Here, we investigated the underlying biology supporting this extended duration of pharmacological activity. We found that siRNA accumulation and stability in acidic intracellular compartments is critical for long-term activity. We show that functional siRNA can be liberated from these compartments and loaded into newly generated Argonaute 2 protein complexes weeks after dosing, enabling continuous RNAi activity over time. Identical siRNAs delivered in lipid nanoparticles or as GalNAc conjugates were dose-adjusted to achieve similar knockdown, but only GalNAc-siRNAs supported an extended duration of activity, illustrating the importance of receptor-mediated siRNA trafficking in the process. Taken together, we provide several lines of evidence that acidic intracellular compartments serve as a long-term depot for GalNAc-siRNA conjugates and are the major contributor to the extended duration of activity observed in vivo.


Assuntos
Acetilgalactosamina/metabolismo , Receptor de Asialoglicoproteína/metabolismo , Portadores de Fármacos , Inativação Gênica , Pré-Albumina/genética , RNA Interferente Pequeno/metabolismo , Acetilgalactosamina/química , Animais , Proteínas Argonautas/genética , Receptor de Asialoglicoproteína/genética , Transporte Biológico , Estabilidade de Medicamentos , Feminino , Glicoconjugados/química , Glicoconjugados/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Fígado/citologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Nanopartículas/metabolismo , Pré-Albumina/antagonistas & inibidores , Pré-Albumina/metabolismo , RNA Interferente Pequeno/genética , Fatores de Tempo
15.
J Am Chem Soc ; 143(23): 8791-8803, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34061528

RESUMO

Specialized cellular networks of oxidoreductases coordinate the dithiol/disulfide-exchange reactions that control metabolism, protein regulation, and redox homeostasis. For probes to be selective for redox enzymes and effector proteins (nM to µM concentrations), they must also be able to resist non-specific triggering by the ca. 50 mM background of non-catalytic cellular monothiols. However, no such selective reduction-sensing systems have yet been established. Here, we used rational structural design to independently vary thermodynamic and kinetic aspects of disulfide stability, creating a series of unusual disulfide reduction trigger units designed for stability to monothiols. We integrated the motifs into modular series of fluorogenic probes that release and activate an arbitrary chemical cargo upon reduction, and compared their performance to that of the literature-known disulfides. The probes were comprehensively screened for biological stability and selectivity against a range of redox effector proteins and enzymes. This design process delivered the first disulfide probes with excellent stability to monothiols yet high selectivity for the key redox-active protein effector, thioredoxin. We anticipate that further applications of these novel disulfide triggers will deliver unique probes targeting cellular thioredoxins. We also anticipate that further tuning following this design paradigm will enable redox probes for other important dithiol-manifold redox proteins, that will be useful in revealing the hitherto hidden dynamics of endogenous cellular redox systems.

16.
RNA ; 25(2): 255-263, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30463937

RESUMO

Hereditary angioedema (HAE) is a genetic disorder mostly caused by mutations in the C1 esterase inhibitor gene (C1INH) that results in poor control of contact pathway activation and excess bradykinin generation. Bradykinin increases vascular permeability and is ultimately responsible for the episodes of swelling characteristic of HAE. We hypothesized that the use of RNA interference (RNAi) to reduce plasma Factor XII (FXII), which initiates the contact pathway signaling cascade, would reduce contact pathway activation and prevent excessive bradykinin generation. A subcutaneously administered GalNAc-conjugated small-interfering RNA (siRNA) targeting F12 mRNA (ALN-F12) was developed, and potency was evaluated in mice, rats, and cynomolgus monkeys. The effect of FXII reduction by ALN-F12 administration was evaluated in two different vascular leakage mouse models. An ex vivo assay was developed to evaluate the correlation between human plasma FXII levels and high-molecular weight kininogen (HK) cleavage. A single subcutaneous dose of ALN-F12 led to potent, dose-dependent reduction of plasma FXII in mice, rats, and NHP. In cynomolgus monkeys, a single subcutaneous dose of ALN-F12 at 3 mg/kg resulted in >85% reduction of plasma FXII. Administration of ALN-F12 resulted in dose-dependent reduction of vascular permeability in two different mouse models of bradykinin-driven vascular leakage, demonstrating that RNAi-mediated reduction of FXII can potentially mitigate excess bradykinin stimulation. Lastly, ex vivo human plasma HK cleavage assay indicated FXII-dependent bradykinin generation. Together, these data suggest that RNAi-mediated knockdown of FXII by ALN-F12 is a potentially promising approach for the prophylactic treatment of HAE.


Assuntos
Angioedemas Hereditários/tratamento farmacológico , Bradicinina/biossíntese , Fator XII/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Animais , Permeabilidade Capilar/efeitos dos fármacos , Proteína Inibidora do Complemento C1/genética , Fator XII/análise , Feminino , Humanos , Cininogênios/metabolismo , Macaca fascicularis , Camundongos , Camundongos Endogâmicos C57BL , Interferência de RNA , Ratos
17.
Nucleic Acids Res ; 47(7): 3306-3320, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30820542

RESUMO

For oligonucleotide therapeutics, chemical modifications of the sugar-phosphate backbone are frequently used to confer drug-like properties. Because 2'-deoxy-2'-fluoro (2'-F) nucleotides are not known to occur naturally, their safety profile was assessed when used in revusiran and ALN-TTRSC02, two short interfering RNAs (siRNAs), of the same sequence but different chemical modification pattern and metabolic stability, conjugated to an N-acetylgalactosamine (GalNAc) ligand for targeted delivery to hepatocytes. Exposure to 2'-F-monomer metabolites was low and transient in rats and humans. In vitro, 2'-F-nucleoside 5'-triphosphates were neither inhibitors nor preferred substrates for human polymerases, and no obligate or non-obligate chain termination was observed. Modest effects on cell viability and mitochondrial DNA were observed in vitro in a subset of cell types at high concentrations of 2'-F-nucleosides, typically not attained in vivo. No apparent functional impact on mitochondria and no significant accumulation of 2'-F-monomers were observed after weekly administration of two GalNAc-siRNA conjugates in rats for ∼2 years. Taken together, the results support the conclusion that 2'-F nucleotides can be safely applied for the design of metabolically stabilized therapeutic GalNAc-siRNAs with favorable potency and prolonged duration of activity allowing for low dose and infrequent dosing.


Assuntos
Acetilgalactosamina/efeitos adversos , Acetilgalactosamina/química , Desoxirribonucleotídeos/efeitos adversos , Desoxirribonucleotídeos/química , Flúor/química , RNA Interferente Pequeno/efeitos adversos , RNA Interferente Pequeno/química , Animais , Feminino , Flúor/efeitos adversos , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
18.
Environ Monit Assess ; 193(Suppl 1): 271, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33988759

RESUMO

Recent empirical and theoretical approaches have called for an understanding of the processes underpinning ecosystem service provision. Environmental gradients have shown effects on key plant functional traits that subsequently explain ecosystem properties of several systems. However, little is known concerning how associations between plant functional traits, including both below- and aboveground plant components, predict ecosystem properties and independently measured final ecosystem services. Here, we modeled (1) the responses of the leaf and plant economics spectrum, Plant size axis, and root growth to environmental gradients and (2) how associations between plant functional traits explain trade-offs and synergies between multiple ecosystem properties and final services. Forty-four plots were studied in a coastal marsh landscape of the German North Sea Coast. We used a partial least square structural equation model approach to test the hypothesized model. We found (1) a negative covariation between plant traits pertaining to a size axis and traits explaining both plant growth (roots and stems) and the leaf economics spectrum; (2) this trade-off responded significantly to the land use gradient and nutrient availability, which were both strongly driven by the groundwater gradient; (3) this trade-off explained an initial major trade-off between carbon stocks, at one extreme of the axis, and both the habitat value to conserve endangered plants and forage production for meat and dairy products at the other extreme. However, a secondary trade-off between nature conservation value and forage production, explained by a trade-off between leaf economics spectrum and plant growth in response to the land use intensity gradient, was also found.


Assuntos
Ecossistema , Pradaria , Monitoramento Ambiental , Folhas de Planta , Raízes de Plantas , Plantas
19.
Neuroimage ; 218: 116963, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32461149

RESUMO

Is confidence in perceptual decisions generated by the same brain processes as decision itself, or does confidence require metacognitive processes following up on the decision? In a masked orientation task with varying stimulus-onset-asynchrony, we used EEG and cognitive modelling to trace the timing of the neural correlates of confidence. Confidence reported by human observers increased with stimulus-onset-asynchrony in correct and to a lesser degree in incorrect trials, a pattern incompatible with established models of confidence. Electrophysiological activity was associated with confidence in two different time periods, namely 350-500 â€‹ms after stimulus onset and 250-350 â€‹ms after the response. Cognitive modelling revealed that only the activity following on the stimulus exhibited the same statistical regularities as confidence, while the statistical pattern of the activity following the response was incompatible with confidence. It is argued that electrophysiological markers of confidence and error awareness are at least in parts distinct.


Assuntos
Tomada de Decisões/fisiologia , Metacognição/fisiologia , Modelos Psicológicos , Desempenho Psicomotor/fisiologia , Adolescente , Adulto , Algoritmos , Eletroencefalografia , Fenômenos Eletrofisiológicos , Potenciais Evocados , Feminino , Fixação Ocular , Humanos , Masculino , Orientação , Estimulação Luminosa , Autoimagem , Adulto Jovem
20.
J Org Chem ; 85(12): 8203-8208, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32432864

RESUMO

A concise synthesis of auxofuran (1) was developed. Starting with a Sonogashira cross-coupling reaction, enynol (10) was prepared. A gold(I) catalyzed cycloisomerization led to disubstituted furan 12. Via an intramolecular Friedel-Crafts cyclization, a dihydrobenzofuranone was obtained. Functional group manipulations, including benzylic oxidation, led to the target molecule.


Assuntos
Furanos , Ouro , Benzofuranos , Catálise , Ciclização , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA