Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(39): 24570-24581, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36193826

RESUMO

In the cellular environment, a viral RNA Pseudoknot (PK) structure is responsive to its prevailing ion atmosphere created by a mixture of monovalent and divalent cations. We investigate the influence of such a mixed-salt environment on RNA-PK structure at an atomic resolution through three sets of 1.5 µs explicit solvent molecular dynamics (MD) simulations and also by building a dynamic counterion-condensation (DCC) model at varying divalent Mg2+ concentrations. The DCC model includes explicit interaction of the ligand and adjacent chelated Mg2+ by extending the recently developed generalized Manning condensation model. Its implementation within an all-atom structure-based molecular dynamics framework bolsters its opportunity to explore large-length scale and long-timescale phenomena associated with complex RNA systems immersed in its dynamic ion environment. In the present case of RNA-PK, both explicit MD and DCC simulations reveal a spine of hydrated-Mg2+ to induce stem-I and stem-II closure where the minor groove between these stems is akin to breathing. Mg2+ mediated minor-groove narrowing is coupled with local base-flipping dynamics of a base triple and quadruple, changing the stem structure of such RNA. Contrary to the conversational view of the indispensable need for Mg2+ for the tertiary structure of RNA, the study warns about the plausible detrimental effect of specific Mg2+-phosphate interactions on the RNA-PK structure beyond a certain concentration of Mg2+.


Assuntos
Magnésio , RNA Viral , Cátions Bivalentes , Ligantes , Magnésio/química , Conformação de Ácido Nucleico , Fosfatos , RNA/química , RNA Viral/química , Solventes
2.
Chem Commun (Camb) ; 60(27): 3624-3644, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38501190

RESUMO

RNA, a highly charged biopolymer composed of negatively charged phosphate groups, defies electrostatic repulsion to adopt well-defined, compact structures. Hence, the presence of positively charged metal ions is crucial not only for RNA's charge neutralization, but they also coherently decorate the ion atmosphere of RNA to stabilize its compact fold. This feature article elucidates various modes of close RNA-ion interactions, with a special emphasis on Mg2+ as an outer-sphere and inner-sphere ion. Through examples, we highlight how inner-sphere chelated Mg2+ stabilizes RNA pseudoknots, while outer-sphere ions can also exert long-range electrostatic interactions, inducing groove narrowing, coaxial helical stacking, and RNA ring formation. In addition to investigating the RNA's ion environment, we note that the RNA's hydration environment is relatively underexplored. Our study delves into its profound interplay with the structural dynamics of RNA, employing state-of-the-art atomistic simulation techniques. Through examples, we illustrate how specific ions and water molecules are associated with RNA functions, leveraging atomistic simulations to identify preferential ion binding and hydration sites. However, understanding their impact(s) on the RNA structure remains challenging due to the involvement of large length and long time scales associated with RNA's dynamic nature. Nevertheless, our contributions and recent advances in coarse-grained simulation techniques offer insights into large-scale structural changes dynamically linked to the RNA ion atmosphere. In this connection, we also review how different cutting-edge computational simulation methods provide a microscopic lens into the influence of ions and hydration on RNA structure and dynamics, elucidating distinct ion atmospheric components and specific hydration layers and their individual and collective impacts.


Assuntos
RNA , Água , RNA/química , Água/química , Simulação por Computador , Metais
3.
J Phys Chem Lett ; 14(46): 10402-10411, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37955626

RESUMO

The programmed frameshifting stimulatory element, a promising drug target for COVID-19 treatment, involves a RNA pseudoknot (PK) structure. This RNA PK facilitates frameshifting, enabling RNA viruses to translate multiple proteins from a single mRNA, which is a key strategy for their rapid evolution. Overcoming the challenges of capturing large-scale structural changes of RNA under the influence of a dynamic counterion environment (K+ and Mg2+), the study extended the applications of a newly developed dynamic counterion condensation (DCC) model. DCC simulations reveal potential folding pathways of this RNA PK, supported by the experimental findings obtained using optical tweezers. The study elucidates the pivotal role of Mg2+ ions in crafting a lasso-like RNA topology, a novel RNA motif that governs dynamic transitions between the ring-opened and ring-closed states of the RNA. The pierced lasso component guided by Mg2+-mediated interactions orchestrates inward and outward motion fine-tuning tension on the slippery segment, a critical factor for optimizing frameshifting efficiency.


Assuntos
COVID-19 , RNA , Humanos , SARS-CoV-2/genética , Mudança da Fase de Leitura do Gene Ribossômico , Conformação de Ácido Nucleico , Tratamento Farmacológico da COVID-19
4.
Sci Adv ; 9(41): eade3816, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37831779

RESUMO

Inherent or acquired resistance to sotorasib poses a substantialt challenge for NSCLC treatment. Here, we demonstrate that acquired resistance to sotorasib in isogenic cells correlated with increased expression of integrin ß4 (ITGB4), a component of the focal adhesion complex. Silencing ITGB4 in tolerant cells improved sotorasib sensitivity, while overexpressing ITGB4 enhanced tolerance to sotorasib by supporting AKT-mTOR bypass signaling. Chronic treatment with sotorasib induced WNT expression and activated the WNT/ß-catenin signaling pathway. Thus, silencing both ITGB4 and ß-catenin significantly improved sotorasib sensitivity in tolerant, acquired, and inherently resistant cells. In addition, the proteasome inhibitor carfilzomib (CFZ) exhibited synergism with sotorasib by down-regulating ITGB4 and ß-catenin expression. Furthermore, adagrasib phenocopies the combination effect of sotorasib and CFZ by suppressing KRAS activity and inhibiting cell cycle progression in inherently resistant cells. Overall, our findings unveil previously unrecognized nongenetic mechanisms underlying resistance to sotorasib and propose a promising treatment strategy to overcome resistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Humanos , Antivirais , beta Catenina/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Resistencia a Medicamentos Antineoplásicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA