Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 30(3-4): 182-197, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33517446

RESUMO

Lipotoxicity was recently reported in several forms of kidney disease, including focal segmental glomerulosclerosis (FSGS). Susceptibility to FSGS in African Americans is associated with the presence of genetic variants of the Apolipoprotein L1 gene (APOL1) named G1 and G2. If and how endogenous APOL1 may alter mitochondrial function by the modifying cellular lipid metabolism is unknown. Using transgenic mice expressing the APOL1 variants (G0, G1 or G2) under endogenous promoter, we show that APOL1 risk variant expression in transgenic mice does not impair kidney function at baseline. However, APOL1 G1 expression worsens proteinuria and kidney function in mice characterized by the podocyte inducible expression of nuclear factor of activated T-cells (NFAT), which we have found to cause FSGS. APOL1 G1 expression in this FSGS-model also results in increased triglyceride and cholesterol ester contents in kidney cortices, where lipid accumulation correlated with loss of renal function. In vitro, we show that the expression of endogenous APOL1 G1/G2 in human urinary podocytes is associated with increased cellular triglyceride content and is accompanied by mitochondrial dysfunction in the presence of compensatory oxidative phosphorylation (OXPHOS) complexes elevation. Our findings indicate that APOL1 risk variant expression increases the susceptibility to lipid-dependent podocyte injury, ultimately leading to mitochondrial dysfunction.


Assuntos
Apolipoproteína L1/genética , Variação Genética , Glomerulosclerose Segmentar e Focal/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Podócitos/metabolismo , Negro ou Afro-Americano/genética , Animais , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/fisiopatologia , Homeostase , Humanos , Camundongos , Camundongos Transgênicos , Mitocôndrias/fisiologia , Podócitos/fisiologia , Proteinúria , Triglicerídeos/metabolismo
2.
J Am Soc Nephrol ; 33(12): 2153-2173, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36198430

RESUMO

BACKGROUND: The signaling molecule stimulator of IFN genes (STING) was identified as a crucial regulator of the DNA-sensing cyclic GMP-AMP synthase (cGAS)-STING pathway, and this signaling pathway regulates inflammation and energy homeostasis under conditions of obesity, kidney fibrosis, and AKI. However, the role of STING in causing CKD, including diabetic kidney disease (DKD) and Alport syndrome, is unknown. METHODS: To investigate whether STING activation contributes to the development and progression of glomerular diseases such as DKD and Alport syndrome, immortalized human and murine podocytes were differentiated for 14 days and treated with a STING-specific agonist. We used diabetic db/db mice, mice with experimental Alport syndrome, C57BL/6 mice, and STING knockout mice to assess the role of the STING signaling pathway in kidney failure. RESULTS: In vitro, murine and human podocytes express all of the components of the cGAS-STING pathway. In vivo, activation of STING renders C57BL/6 mice susceptible to albuminuria and podocyte loss. STING is activated at baseline in mice with experimental DKD and Alport syndrome. STING activation occurs in the glomerular but not the tubulointerstitial compartment in association with autophagic podocyte death in Alport syndrome mice and with apoptotic podocyte death in DKD mouse models. Genetic or pharmacologic inhibition of STING protects from progression of kidney disease in mice with DKD and Alport syndrome and increases lifespan in Alport syndrome mice. CONCLUSION: The activation of the STING pathway acts as a mediator of disease progression in DKD and Alport syndrome. Targeting STING may offer a therapeutic option to treat glomerular diseases of metabolic and nonmetabolic origin or prevent their development, progression, or both.


Assuntos
Nefropatias Diabéticas , Nefrite Hereditária , Podócitos , Camundongos , Humanos , Animais , Nefrite Hereditária/genética , Nefrite Hereditária/metabolismo , Camundongos Endogâmicos C57BL , Podócitos/metabolismo , Proteinúria/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Camundongos Knockout , Nucleotidiltransferases/metabolismo
3.
Int J Mol Sci ; 23(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35457062

RESUMO

Sphingolipids, which act as a bioactive signaling molecules, are involved in several cellular processes such as cell survival, proliferation, migration and apoptosis. An imbalance in the levels of sphingolipids can be lethal to cells. Abnormalities in the levels of sphingolipids are associated with several human diseases including kidney diseases. Several studies demonstrate that sphingolipids play an important role in maintaining proper renal function. Sphingolipids can alter the glomerular filtration barrier by affecting the functioning of podocytes, which are key cellular components of the glomerular filtration barrier. This review summarizes the studies in our understanding of the regulation of sphingolipid signaling in kidney diseases, especially in glomerular and tubulointerstitial diseases, and the potential to target sphingolipid pathways in developing therapeutics for the treatment of renal diseases.


Assuntos
Nefropatias , Podócitos , Apoptose , Feminino , Humanos , Nefropatias/metabolismo , Masculino , Podócitos/metabolismo , Transdução de Sinais , Esfingolipídeos/metabolismo
4.
Kidney Int ; 98(5): 1275-1285, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32739420

RESUMO

Defective cholesterol metabolism primarily linked to reduced ATP-binding cassette transporter A1 (ABCA1) expression is closely associated with the pathogenesis and progression of kidney diseases, including diabetic kidney disease and Alport Syndrome. However, whether the accumulation of free or esterified cholesterol contributes to progression in kidney disease remains unclear. Here, we demonstrate that inhibition of sterol-O-acyltransferase-1 (SOAT1), the enzyme at the endoplasmic reticulum that converts free cholesterol to cholesterol esters, which are then stored in lipid droplets, effectively reduced cholesterol ester and lipid droplet formation in human podocytes. Furthermore, we found that inhibition of SOAT1 in podocytes reduced lipotoxicity-mediated podocyte injury in diabetic kidney disease and Alport Syndrome in association with increased ABCA1 expression and ABCA1-mediated cholesterol efflux. In vivo, Soat1 deficient mice did not develop albuminuria or mesangial expansion at 10-12 months of age. However, Soat1 deficiency/inhibition in experimental models of diabetic kidney disease and Alport Syndrome reduced cholesterol ester content in kidney cortices and protected from disease progression. Thus, targeting SOAT1-mediated cholesterol metabolism may represent a new therapeutic strategy to treat kidney disease in patients with diabetic kidney disease and Alport Syndrome, like that suggested for Alzheimer's disease and cancer treatments.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Nefrite Hereditária , Podócitos , Albuminúria , Animais , Colesterol , Nefropatias Diabéticas/etiologia , Humanos , Camundongos , Nefrite Hereditária/genética
5.
PLoS Genet ; 12(7): e1006160, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27462707

RESUMO

While most yeast enzymes for the biosynthesis of glycerophospholipids, sphingolipids and ergosterol are known, genes for several postulated transporters allowing the flopping of biosynthetic intermediates and newly made lipids from the cytosolic to the lumenal side of the membrane are still not identified. An E-MAP measuring the growth of 142'108 double mutants generated by systematically crossing 543 hypomorphic or deletion alleles in genes encoding multispan membrane proteins, both on media with or without an inhibitor of fatty acid synthesis, was generated. Flc proteins, represented by 4 homologous genes encoding presumed FAD or calcium transporters of the ER, have a severe depression of sphingolipid biosynthesis and elevated detergent sensitivity of the ER. FLC1, FLC2 and FLC3 are redundant in granting a common function, which remains essential even when the severe cell wall defect of flc mutants is compensated by osmotic support. Biochemical characterization of some other genetic interactions shows that Cst26 is the enzyme mainly responsible for the introduction of saturated very long chain fatty acids into phosphatidylinositol and that the GPI lipid remodelase Cwh43, responsible for introducing ceramides into GPI anchors having a C26:0 fatty acid in sn-2 of the glycerol moiety can also use lyso-GPI protein anchors and various base resistant lipids as substrates. Furthermore, we observe that adjacent deletions in several chromosomal regions show strong negative genetic interactions with a single gene on another chromosome suggesting the presence of undeclared suppressor mutations in certain chromosomal regions that need to be identified in order to yield meaningful E-map data.


Assuntos
Metabolismo dos Lipídeos/genética , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Parede Celular/genética , Parede Celular/metabolismo , Ceramidas/genética , Ceramidas/metabolismo , Deleção Cromossômica , Cruzamentos Genéticos , Ergosterol/genética , Ergosterol/metabolismo , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Glicosilfosfatidilinositóis/genética , Glicosilfosfatidilinositóis/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Mutantes/genética , Fosfatidilinositóis/genética , Fosfatidilinositóis/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/genética , Esfingolipídeos/metabolismo
6.
Kidney Int ; 94(6): 1151-1159, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30301568

RESUMO

Studies suggest that altered renal lipid metabolism plays a role in the pathogenesis of diabetic kidney disease and that genetic or pharmacological induction of cholesterol efflux protects from the development of diabetic kidney disease and focal segmental glomerulosclerosis (FSGS). Here we tested whether altered lipid metabolism contributes to renal failure in the Col4a3 knockout mouse model for Alport Syndrome. There was an eight-fold increase in the cholesterol content in renal cortexes of mice with Alport Syndrome. This was associated with increased glomerular lipid droplets and cholesterol crystals. Treatment of mice with Alport Syndrome with hydroxypropyl-ß-cyclodextrin (HPßCD) reduced cholesterol content in the kidneys of mice with Alport Syndrome and protected from the development of albuminuria, renal failure, inflammation and tubulointerstitial fibrosis. Cholesterol efflux and trafficking-related genes were primarily affected in mice with Alport Syndrome and were differentially regulated in the kidney cortex and isolated glomeruli. HPßCD also protected from proteinuria and mesangial expansion in a second model of non-metabolic kidney disease, adriamycin-induced nephropathy. Consistent with our experimental findings, microarray analysis confirmed dysregulation of several lipid-related genes in glomeruli isolated from kidney biopsies of patients with primary FSGS enrolled in the NEPTUNE study. Thus, lipid dysmetabolism occurs in non-metabolic glomerular disorders such as Alport Syndrome and FSGS, and HPßCD improves renal function in experimental Alport Syndrome and FSGS.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Glomerulosclerose Segmentar e Focal/tratamento farmacológico , Glomérulos Renais/patologia , Nefrite Hereditária/tratamento farmacológico , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Animais , Autoantígenos/genética , Biópsia , Colesterol/metabolismo , Colágeno Tipo IV/genética , Doxorrubicina/toxicidade , Feminino , Glomerulosclerose Segmentar e Focal/induzido quimicamente , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Knockout , Nefrite Hereditária/genética , Nefrite Hereditária/metabolismo , Nefrite Hereditária/patologia , Estudos Observacionais como Assunto
7.
Eukaryot Cell ; 14(12): 1203-16, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26432633

RESUMO

Inositolphosphorylceramide (IPC) and its mannosylated derivatives are the only complex sphingolipids of yeast. Their synthesis can be reduced by aureobasidin A (AbA), which specifically inhibits the IPC synthase Aur1. AbA reportedly, by diminishing IPC levels, causes endoplasmic reticulum (ER) stress, an increase in cytosolic calcium, reactive oxygen production, and mitochondrial damage leading to apoptosis. We found that when Aur1 is gradually depleted by transcriptional downregulation, the accumulation of ceramides becomes a major hindrance to cell survival. Overexpression of the alkaline ceramidase YPC1 rescues cells under this condition. We established hydroxylated C26 fatty acids as a reliable hallmark of ceramide hydrolysis. Such hydrolysis occurs only when YPC1 is overexpressed. In contrast, overexpression of YPC1 has no beneficial effect when Aur1 is acutely repressed by AbA. A high-throughput genetic screen revealed that vesicle-mediated transport between Golgi apparatus, endosomes, and vacuole becomes crucial for survival when Aur1 is repressed, irrespective of the mode of repression. In addition, vacuolar acidification becomes essential when cells are acutely stressed by AbA, and quinacrine uptake into vacuoles shows that AbA activates vacuolar acidification. The antioxidant N-acetylcysteine does not improve cell growth on AbA, indicating that reactive oxygen radicals induced by AbA play a minor role in its toxicity. AbA strongly induces the cell wall integrity pathway, but osmotic support does not improve the viability of wild-type cells on AbA. Altogether, the data support and refine current models of AbA-mediated cell death and add vacuolar protein transport and acidification as novel critical elements of stress resistance.


Assuntos
Glicoesfingolipídeos/metabolismo , Complexo de Golgi/metabolismo , Hexosiltransferases/metabolismo , Saccharomyces cerevisiae/enzimologia , Vesículas Transportadoras/metabolismo , Vacúolos/metabolismo , Alelos , Transporte Biológico/efeitos dos fármacos , Vias Biossintéticas/efeitos dos fármacos , Ceramidas/metabolismo , Depsipeptídeos/farmacologia , Doxiciclina/farmacologia , Epistasia Genética/efeitos dos fármacos , Deleção de Genes , Ontologia Genética , Testes Genéticos , Complexo de Golgi/efeitos dos fármacos , Hexosiltransferases/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , Hidrólise , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Mutação/genética , Quinacrina/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/biossíntese , Vesículas Transportadoras/efeitos dos fármacos , Vacúolos/efeitos dos fármacos
8.
FEMS Yeast Res ; 14(5): 776-88, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24866405

RESUMO

Humans and yeast possess alkaline ceramidases located in the early secretory pathway. Single deletions of the highly homologous yeast alkaline ceramidases YPC1 and YDC1 have very little genetic interactions or phenotypes. Here, we performed chemical-genetic screens to find deletions/conditions that would alter the growth of ypc1∆ydc1∆ double mutants. These screens were essentially negative, demonstrating that ceramidase activity is not required for cell growth even under genetic stresses. A previously reported protein targeting defect of ypc1∆ could not be reproduced and reported abnormalities in sphingolipid biosynthesis detected by metabolic labeling do not alter the mass spectrometric lipid profile of ypc1∆ydc1∆ cells. Ceramides of ypc1∆ydc1∆ remained normal even in presence of aureobasidin A, an inhibitor of inositolphosphorylceramide synthase. Moreover, in caloric restriction conditions Ypc1p reduces chronological life span. A novel finding is that, when working backwards as a ceramide synthase in vivo, Ypc1p prefers C24 and C26 fatty acids as substrates, whereas it prefers C16:0, when solubilized in detergent and working in vitro. Therefore, its physiological activity may not only concern the minor ceramides containing C14 and C16. Intriguingly, so far the sole discernable benefit of conserving YPC1 for yeast resides with its ability to convey relative resistance toward H2O2.


Assuntos
Ceramidase Alcalina/metabolismo , Amidoidrolases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Ceramidase Alcalina/genética , Amidoidrolases/genética , Ceramidas/metabolismo , Técnicas de Inativação de Genes , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
Methods Mol Biol ; 2625: 163-174, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36653642

RESUMO

Lipid droplets (LDs), initially thought to be mere lipid storage structures, are highly dynamic organelles with complex functions that control cell fate and behavior. In recent years, their relevance as therapeutic targets for a wide array of human diseases has been well established. Consequently, efforts to develop tools to study them have intensified, including assays that can accurately track LD levels in clinically relevant cell-based models. We previously reported that LD accumulation destines podocytes for lipotoxicity and cell death in renal diseases of metabolic and nonmetabolic origin. We also showed that LD accumulation in those cells serves as both a marker for disease progression and as a therapeutic target. Here, we describe a robust phenotypic screening method, using differentiated human podocytes, for identifying small-molecule compounds that rescue podocytes from LD accumulation and lipotoxicity under cellular stress. Major assay advances include 1) the use of a solvatochromic dye to improve LD staining, reduce background noise, and improve detection accuracy, 2) use of confocal imaging to reduce vertical overlap of LDs and enable accurate counting, 3) combining membrane and cytoskeleton stains to improve cell segmentation in confocal mode, and 4) use of an optimized spot detection algorithm that requires minimal configuration per individual run. The assay is robust and yields a Z-factor that is consistently >0.5.


Assuntos
Nefropatias , Podócitos , Humanos , Gotículas Lipídicas/metabolismo , Podócitos/metabolismo , Diferenciação Celular , Nefropatias/metabolismo , Metabolismo dos Lipídeos
10.
Sci Rep ; 13(1): 9616, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316538

RESUMO

Decreased ATP Binding Cassette Transporter A1 (ABCA1) expression and caspase-4-mediated noncanonical inflammasome contribution have been described in podocytes in diabetic kidney disease (DKD). To investigate a link between these pathways, we evaluated pyroptosis-related mediators in human podocytes with stable knockdown of ABCA1 (siABCA1) and found that mRNA levels of IRF1, caspase-4, GSDMD, caspase-1 and IL1ß were significantly increased in siABCA1 compared to control podocytes and that protein levels of caspase-4, GSDMD and IL1ß were equally increased. IRF1 knockdown in siABCA1 podocytes prevented increases in caspase-4, GSDMD and IL1ß. Whereas TLR4 inhibition did not decrease mRNA levels of IRF1 and caspase-4, APE1 protein expression increased in siABCA1 podocytes and an APE1 redox inhibitor abrogated siABCA1-induced expression of IRF1 and caspase-4. RELA knockdown also offset the pyroptosis priming, but ChIP did not demonstrate increased binding of NFκB to IRF1 promoter in siABCA1 podocytes. Finally, the APE1/IRF1/Casp1 axis was investigated in vivo. APE1 IF staining and mRNA levels of IRF1 and caspase 11 were increased in glomeruli of BTBR ob/ob compared to wildtype. In conclusion, ABCA1 deficiency in podocytes caused APE1 accumulation, which reduces transcription factors to increase the expression of IRF1 and IRF1 target inflammasome-related genes, leading to pyroptosispriming.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Podócitos , Humanos , Nefropatias Diabéticas/genética , Inflamassomos , Piroptose , Caspase 1/genética , Caspases , Fator Regulador 1 de Interferon/genética , Transportador 1 de Cassete de Ligação de ATP/genética
11.
Elife ; 122023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37129368

RESUMO

Sodium-glucose cotransporter-2 inhibitors (SGLT2i) are anti-hyperglycemic agents that prevent glucose reabsorption in proximal tubular cells. SGLT2i improves renal outcomes in both diabetic and non-diabetic patients, indicating it may have beneficial effects beyond glycemic control. Here, we demonstrate that SGLT2i affects energy metabolism and podocyte lipotoxicity in experimental Alport syndrome (AS). In vitro, we found that the SGLT2 protein was expressed in human and mouse podocytes to a similar extent in tubular cells. Newly established immortalized podocytes from Col4a3 knockout mice (AS podocytes) accumulate lipid droplets along with increased apoptosis when compared to wild-type podocytes. Treatment with SGLT2i empagliflozin reduces lipid droplet accumulation and apoptosis in AS podocytes. Empagliflozin inhibits the utilization of glucose/pyruvate as a metabolic substrate in AS podocytes but not in AS tubular cells. In vivo, we demonstrate that empagliflozin reduces albuminuria and prolongs the survival of AS mice. Empagliflozin-treated AS mice show decreased serum blood urea nitrogen and creatinine levels in association with reduced triglyceride and cholesterol ester content in kidney cortices when compared to AS mice. Lipid accumulation in kidney cortices correlates with a decline in renal function. In summary, empagliflozin reduces podocyte lipotoxicity and improves kidney function in experimental AS in association with the energy substrates switch from glucose to fatty acids in podocytes.


Assuntos
Diabetes Mellitus Tipo 2 , Nefrite Hereditária , Podócitos , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Camundongos , Animais , Podócitos/metabolismo , Nefrite Hereditária/tratamento farmacológico , Nefrite Hereditária/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/metabolismo , Glucose/toxicidade , Glucose/metabolismo
12.
Yeast ; 28(5): 405-21, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21387406

RESUMO

The Rec10 protein, a component of the linear elements forming along sister chromatids in meiotic prophase of Schizosaccharomyces pombe, plays an important role in the activation of Rec12 for double-strand break formation, and thus the initiation of recombination between homologous chromosomes. Recombination between homologous chromosomes was moderately reduced in homozygous crosses of the C-terminal truncation mutant rec10-155 and strongly in the full deletion allele rec10-175. Both alleles were also tested in two assays for intrachromosomal recombination (PS1 and VL1) and showed only slight reductions, while deletion of rec12 led to a 13-fold reduction. The even stronger reductions in rec10 rec12 double deletion crosses indicate partially redundant functions of Rec10 and Rec12 in the initiation of intrachromosomal recombination. A low level of double-strand breaks has been detected in rec10-175 meiosis at the mbs1 hotspot of recombination, and spore viability in the double mutant was also lower than in the single-deletion mutants. Low levels of apparent crossover and conversion between homologous chromosomes in the absence of Rec12 have been quantified using a newly developed assay. The results also indicate that the functions of Rec10 differ in several respects from those of its distant homologue Red1 in Saccharomyces cerevisiae, including interactions with Hop1 and Mek1 for promotion of recombination between homologues at the expense of sister chromatid recombination.


Assuntos
Meiose/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Cromátides/genética , Cruzamentos Genéticos , Quebras de DNA de Cadeia Dupla , Eletroforese em Gel de Campo Pulsado , Cinética , Mutagênese Insercional , Recombinação Genética , Esporos Fúngicos
13.
EBioMedicine ; 63: 103162, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33340991

RESUMO

BACKGROUND: Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that is activated by collagens that is involved in the pathogenesis of fibrotic disorders. Interestingly, de novo production of the collagen type I (Col I) has been observed in Col4a3 knockout mice, a mouse model of Alport Syndrome (AS mice). Deletion of the DDR1 in AS mice was shown to improve survival and renal function. However, the mechanisms driving DDR1-dependent fibrosis remain largely unknown. METHODS: Podocyte pDDR1 levels, Collagen and cluster of differentiation 36 (CD36) expression was analyzed by Real-time PCR and Western blot. Lipid droplet accumulation and content was determined using Bodipy staining and enzymatic analysis. CD36 and DDR1 interaction was determined by co-immunoprecipitation. Creatinine, BUN, albuminuria, lipid content, and histological and morphological assessment of kidneys harvested from AS mice treated with Ezetimibe and/or Ramipril or vehicle was performed. FINDINGS: We demonstrate that Col I-mediated DDR1 activation induces CD36-mediated podocyte lipotoxic injury. We show that Ezetimibe interferes with the CD36/DDR1 interaction in vitro and prevents lipotoxicity in AS mice thus preserving renal function similarly to ramipril. INTERPRETATION: Our study suggests that Col I/DDR1-mediated lipotoxicity contributes to renal failure in AS and that targeting this pathway may represent a new therapeutic strategy for patients with AS and with chronic kidney diseases (CKD) associated with Col4 mutations. FUNDING: This study is supported by the NIH grants R01DK117599, R01DK104753, R01CA227493, U54DK083912, UM1DK100846, U01DK116101, UL1TR000460 (Miami Clinical Translational Science Institute, National Center for Advancing Translational Sciences and the National Institute on Minority Health and Health Disparities), F32DK115109, Hoffmann-La Roche and Alport Syndrome Foundation.


Assuntos
Receptor com Domínio Discoidina 1/metabolismo , Matriz Extracelular/metabolismo , Nefrite Hereditária/metabolismo , Podócitos/metabolismo , Animais , Biomarcadores , Antígenos CD36/metabolismo , Linhagem Celular , Colágeno Tipo I/metabolismo , Receptor com Domínio Discoidina 1/genética , Modelos Animais de Doenças , Suscetibilidade a Doenças , Fibrose , Expressão Gênica , Humanos , Imuno-Histoquímica/métodos , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Camundongos , Camundongos Knockout , Nefrite Hereditária/etiologia , Nefrite Hereditária/patologia , Fosforilação , Podócitos/patologia
14.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(12): 158517, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31487557

RESUMO

Sphingolipids have important functions as structural components of cells but they also function as signaling molecules regulating different cellular processes such as apoptosis, cell proliferation, cell migration, cell division and inflammation. Hence, a tight regulation of the sphingolipid homeostasis is essential to maintain proper cellular functions. Mammalian ORMDL proteins are orthologues of the yeast ORM1/2 proteins, which regulate ceramide synthesis in yeast. ORMDL proteins inhibit serine palmitoyltransferase (SPT), the enzyme regulating a rate-limiting step of the sphingolipid pathway to control the levels of ceramides and other sphingolipids. Sphingomyelinase phosphodiesterase like 3b (SMPDL3b) is a glycosylphosphatidylinositol (GPI) anchored protein in the plasma membrane (PM) and determines membrane fluidity in macrophages. We previously showed that differential expression of SMPDL3b alters the availability of Ceramide-1-phosphate (C1P) in human podocytes, which are terminally differentiated cells of the kidney filtration barrier. This observation lead us to investigate if SMPDL3b controls C1P availability in human podocytes by interfering with ceramide kinase (CERK) expression and function. We found that SMPDL3b interacts with CERK and can bind to C1P in vitro. Furthermore, CERK expression is reduced when SMPDL3b expression is silenced. These observations led us to propose that one of the mechanisms by which SMPDL3b influences the amount of C1P available in the podocytes is by interfering with the function of CERK thereby maintaining a balance in the levels of the C1P in podocytes.


Assuntos
Ceramidas/metabolismo , Podócitos/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Humanos , Camundongos Endogâmicos C57BL , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Podócitos/citologia , Esfingomielina Fosfodiesterase/metabolismo
15.
Methods Mol Biol ; 1996: 199-206, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31127558

RESUMO

Lipid droplets (LDs) are dynamic organelles that regulate the storage and homeostasis of intracellular triglycerides and other neutral lipids. Studies show that the number, morphology, and subcellular localization of LDs are altered in a growing number of diseases. As such, methodologies for imaging and quantifying LDs have become essential tools for detecting changes in cellular lipid metabolism, which could be an important indicator of disease onset or progression. We previously reported on the accumulation of LDs in podocytes of the kidney glomerulus in nephrological diseases of metabolic and non-metabolic origin. Here, we describe a high-content analysis (HCA) method for automated detection and quantification of LDs in differentiated human podocytes.


Assuntos
Microscopia Intravital/métodos , Gotículas Lipídicas/metabolismo , Lipidômica/métodos , Podócitos/metabolismo , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Linhagem Celular , Corantes Fluorescentes/química , Humanos , Processamento de Imagem Assistida por Computador/métodos , Metabolismo dos Lipídeos , Microscopia Confocal/métodos , Podócitos/citologia , Software
16.
J Clin Invest ; 129(8): 3387-3400, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31329164

RESUMO

Fibroblasts from patients with Tangier disease carrying ATP-binding cassette A1 (ABCA1) loss-of-function mutations are characterized by cardiolipin accumulation, a mitochondrial-specific phospholipid. Suppression of ABCA1 expression occurs in glomeruli from patients with diabetic kidney disease (DKD) and in human podocytes exposed to DKD sera collected prior to the development of DKD. We demonstrated that siRNA ABCA1 knockdown in podocytes led to reduced oxygen consumption capabilities associated with alterations in the oxidative phosphorylation (OXPHOS) complexes and with cardiolipin accumulation. Podocyte-specific deletion of Abca1 (Abca1fl/fl) rendered mice susceptible to DKD, and pharmacological induction of ABCA1 improved established DKD. This was not mediated by free cholesterol, as genetic deletion of sterol-o-acyltransferase-1 (SOAT1) in Abca1fl/fl mice was sufficient to cause free cholesterol accumulation but did not cause glomerular injury. Instead, cardiolipin mediates ABCA1-dependent susceptibility to podocyte injury, as inhibition of cardiolipin peroxidation with elamipretide improved DKD in vivo and prevented ABCA1-dependent podocyte injury in vitro and in vivo. Collectively, we describe a pathway definitively linking ABCA1 deficiency to cardiolipin-driven mitochondrial dysfunction. We demonstrated that this pathway is relevant to DKD and that ABCA1 inducers or inhibitors of cardiolipin peroxidation may each represent therapeutic strategies for the treatment of established DKD.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/deficiência , Cardiolipinas/metabolismo , Nefropatias Diabéticas/metabolismo , Peroxidação de Lipídeos , Mitocôndrias/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Cardiolipinas/genética , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Humanos , Camundongos , Mitocôndrias/genética , Mitocôndrias/patologia , Podócitos , Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase/metabolismo
18.
PLoS One ; 11(1): e0145831, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26752183

RESUMO

Ceramide is synthesized in yeast by two redundant acyl-CoA dependent synthases, Lag1 and Lac1. In lag1∆ lac1∆ cells, free fatty acids and sphingoid bases are elevated, and ceramides are produced through the redundant alkaline ceramidases Ypc1 and Ydc1, working backwards. Even with all four of these genes deleted, cells are surviving and continue to contain small amounts of complex sphingolipids. Here we show that these residual sphingolipids are not synthesized by YPR114w or YJR116w, proteins of unknown function showing a high degree of homology to Lag1 and Lac1. Indeed, the hextuple lag1∆ lac1∆ ypc1∆ ydc1∆ ypr114w∆ yjr116w∆ mutant still contains ceramides and complex sphingolipids. Yjr116w∆ exhibit an oxygen-dependent hypersensitivity to Cu2+ due to an increased mitochondrial production of reactive oxygen species (ROS) and a mitochondrially orchestrated programmed cell death in presence of copper, but also a general copper hypersensitivity that cannot be counteracted by the antioxidant N-acetyl-cysteine (NAC). Myriocin efficiently represses the synthesis of sphingoid bases of ypr114w∆, but not its growth. Both yjr116w∆ and ypr114w∆ have fragmented vacuoles and produce less ROS than wild type, before and after diauxic shift. Ypr114w∆/ypr114w∆ have an increased chronological life span. Thus, Yjr116w and Ypr114w are related, but not functionally redundant.


Assuntos
Ceramidas/biossíntese , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Acetilcisteína/farmacologia , Ceramidase Alcalina/genética , Ceramidase Alcalina/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Cátions Bivalentes , Cobre/toxicidade , Ácidos Graxos Monoinsaturados/farmacologia , Deleção de Genes , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Oxigênio/farmacologia , Filogenia , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA