Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Neurorehabil Neural Repair ; 38(5): 364-372, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38506532

RESUMO

BACKGROUND: Concussions result in transient symptoms stemming from a cortical metabolic energy crisis. Though this metabolic energy crisis typically resolves in a month, symptoms can persist for years. The symptomatic period is associated with gait dysfunction, the cortical underpinnings of which are poorly understood. Quantifying prefrontal cortex (PFC) activity during gait may provide insight into post-concussion gait dysfunction. The purpose of this study was to explore the effects of persisting concussion symptoms on PFC activity during gait. We hypothesized that adults with persisting concussion symptoms would have greater PFC activity during gait than controls. Within the concussed group, we hypothesized that worse symptoms would relate to increased PFC activity during gait, and that increased PFC activity would relate to worse gait characteristics. METHODS: The Neurobehavior Symptom Inventory (NSI) characterized concussion symptoms. Functional near-infrared spectroscopy quantified PFC activity (relative concentration changes of oxygenated hemoglobin [HbO2]) in 14 people with a concussion and 25 controls. Gait was assessed using six inertial sensors in the concussion group. RESULTS: Average NSI total score was 26.4 (13.2). HbO2 was significantly higher (P = .007) for the concussed group (0.058 [0.108]) compared to the control group (-0.016 [0.057]). Within the concussion group, HbO2 correlated with NSI total symptom score (ρ = .62; P = .02), sagittal range of motion (r = .79; P = .001), and stride time variability (r = -.54; P = .046). CONCLUSION: These data suggest PFC activity relates to symptom severity and some gait characteristics in people with persistent concussion symptoms. Identifying the neurophysiological underpinnings to gait deficits post-concussion expands our knowledge of motor behavior deficits in people with persistent concussion symptoms.


Assuntos
Concussão Encefálica , Síndrome Pós-Concussão , Córtex Pré-Frontal , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Córtex Pré-Frontal/fisiopatologia , Córtex Pré-Frontal/diagnóstico por imagem , Masculino , Feminino , Adulto , Concussão Encefálica/fisiopatologia , Concussão Encefálica/complicações , Adulto Jovem , Síndrome Pós-Concussão/fisiopatologia , Síndrome Pós-Concussão/etiologia , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Pessoa de Meia-Idade , Marcha/fisiologia
2.
Gait Posture ; 109: 84-88, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38286063

RESUMO

BACKGROUND AND AIM: Abnormal gait characteristics have been observed in people with diabetic neuropathy, but it is unclear if subtle changes in gait occur in prediabetic people with impaired fasting glucose (IFG). The aims of this study were: (1) to investigate if digital gait measures discriminate people with prediabetes from healthy control participants (HC) and (2) to investigate the relationship between gait measures and clinical scores (concurrent validity). METHODS: 108 people with prediabetes (71.20 ± 5.11 years) and 63 HC subjects (70.40 ± 6.25 years) wore 6 inertial sensors (Opals by APDM, Clario) while performing the 400-meter fast walk test. Fifty-five measures across 5 domains of gait (Lower Body, Upper Body, Turning, and Variability) were averaged. Analysis of Covariance was used to investigate the group differences, with body mass index as a covariate. Pearson's correlation coefficient assessed the association between the gait measures and the Short Physical Performance Battery (SPPB) score. RESULTS: Nine gait measures were significantly different (p < 10-4) between IFG and HC groups. Step duration, cadence, and turn velocity were the most discriminative measures. In contrast, traditional stop-watch time was not significantly different between groups (p = 0.13), after controlling for BMI. Cadence (r = -0.37, p < 0.001), step duration (r = -0.39, p < 0.001), and turn velocity (r = 0.47, p < 0.001) showed a significant correlation with the SPPB score. CONCLUSION: Body-worn inertial sensors detected gait impairments in people with prediabetes that related to clinical balance test performance, even when the traditional stop-watch time was not prolonged for the 400-meter walk test.


Assuntos
Estado Pré-Diabético , Humanos , Estado Pré-Diabético/complicações , Estado Pré-Diabético/diagnóstico , Marcha , Caminhada
3.
Res Sq ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38854112

RESUMO

Background: Androgen deprivation therapy (ADT) increases the risk of frailty, falls, and, poor physical functioning in prostate cancer survivors. Detection of frailty is limited to self-report instruments and performance measures, so unbiased tools are needed. We investigated relationships between an unbiased measure - daily life mobility - and ADT history, frailty, falls, and functioning in ADT-treated prostate cancer survivors. Methods: ADT-treated prostate cancer survivors (N=99) were recruited from an exercise clinical trial, an academic medical center, and the community. Participants completed performance measures and surveys to assess frailty, fall history, and physical functioning, then wore instrumented socks to continuously monitor daily life mobility. We performed a principal component analysis on daily life mobility metrics and used regression analyses to investigate relationships between domains of daily life mobility and frailty, fall history, and physical functioning. Results: Daily life mobility metrics clustered into four domains: Gait Pace, Rhythm, Activity, and Balance. Worse scores on Rhythm and Activity were associated with increased odds of frailty (OR 1.59, 95% CI: 1.04, 2.49 and OR 1.81, 95% CI: 1.19, 2.83, respectively). A worse score on Rhythm was associated with increased odds of ≥1 falls in the previous year (OR 1.60, 95% CI: 1.05, 2.47). Worse scores on Gait Pace, Rhythm, and Activity were associated with worse physical functioning. Mobility metrics were similar between current and past users of ADT. Conclusions: Continuous passive monitoring of daily life mobility may identify prostate cancer survivors who have or are developing risk for frailty, falls, and declines in physical functioning.

4.
Neurorehabil Neural Repair ; : 15459683241265935, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075890

RESUMO

BACKGROUND: Walking abnormalities in people with Parkinson's disease (PD) are characterized by a shift in locomotor control from healthy automaticity to compensatory, executive control, mainly located in the prefrontal cortex (PFC). Although PFC activity during walking increases in people with PD, the time course of PFC activity during walking and its relationship to clinical or gait characteristics is unknown. OBJECTIVE: To identify the time course of PFC activity during walking in people with PD. To investigate whether clinical or gait variables would explain the PFC activity changes. METHODS: Thirty-eight people with PD tested OFF medication wore a portable, functional near-infrared spectroscopy (fNIRS) system to record relative PFC activity while walking. Wearable inertial sensors recorded spatiotemporal gait characteristics. Based on the PFC activity (fNIRS) in the late phase of the walking task (final 40 seconds), compared to the early phase (initial 40 seconds), participants were separated into 2 groups: reduced or sustained PFC activity. RESULTS: People with PD who reduced PFC activity during walking had less impaired gait (eg, faster gait speed) than those who had a sustained increase in PFC activity (P < .05). Cognitive set-shifting ability explained 18% of the PFC activation in the group with a sustained increase in PFC activity (P = .033). CONCLUSIONS: The time course of reduction in PFC activity corresponds to less impaired gait performance in people with PD, while a sustained increase in PFC activity is related to worse cognitive flexibility. Reduction in PFC activity while walking may indicate a less impaired, automatic control of walking.

5.
Geriatrics (Basel) ; 9(3)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38920422

RESUMO

Although supervised and real-time telerehabilitation by videoconferencing is now becoming common for people with Parkinson's disease (PD), its efficacy for balance and gait is still unclear. This paper uses a scoping approach to review the current evidence on the effects of telerehabilitation by videoconferencing on balance and gait for patients with PD. We also explored whether studies have used wearable technology during telerehabilitation to assess and treat balance and gait via videoconferencing. Literature searches were conducted using PubMed, ISI's Web of Knowledge, Cochrane's Library, and Embase. The data were extracted for study design, treatment, and outcomes. Fourteen studies were included in this review. Of these, seven studies investigated the effects of telerehabilitation (e.g., tele-yoga and adapted physiotherapy exercises) on balance and gait measures (e.g., self-reported balance, balance scale, walking speed, mobility, and motor symptoms) using videoconferencing in both assessment and treatment. The telerehabilitation programs by videoconferencing were feasible and safe for people with PD; however, the efficacy still needs to be determined, as only four studies had a parallel group. In addition, no study used wearable technology. Robust evidence of the effects of telerehabilitation by videoconferencing on balance and gait for patients with PD was not found, suggesting that future powered, prospective, and robust clinical trials are needed.

6.
Semin Oncol Nurs ; 40(4): 151658, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38902183

RESUMO

OBJECTIVES: To describe changes in daily life mobility in prostate cancer survivors treated with androgen deprivation therapy (ADT) after a 6-month exercise intervention using novel instrumented socks and to identify characteristics of participants who exhibited changes in daily life mobility. METHODS: A subset of participants in a fall prevention exercise trial completed objective tests and patient-reported surveys of physical functioning, and wore instrumented socks for up to 7 days to measure daily life mobility. Changes in cadence, double support proportion, and pitch angle of the foot at toe-off were selected as measures of daily life mobility previously found to be different in men exposed to ADT for prostate cancer versus controls. Daily life mobility was compared from baseline to 6 months using paired t-tests. Characteristics of responders who improved their daily life mobility were compared to nonresponders using two-sample t-tests, Chi-squared proportion tests, or Fisher's Exact Tests. RESULTS: Our sample included 35 prostate cancer survivors (mean age 71.6 ± 7.8 years). Mean cadence, double support proportion, and pitch angle at toe-off did not change significantly over 6 months of exercise, but 14 participants (40%) improved in at least two of three daily life mobility measures ("responders"). Responders were characterized by lower physical functioning, lower cadence in daily life, fewer comorbidities, and better social and mental/emotional functioning. CONCLUSIONS: Certain daily life mobility measures potentially impacted by ADT could be measured with instrumented socks and improved by exercise. Men who start with lower physical functioning and better social and mental/emotional functioning appear most likely to benefit, possibly because they have more to gain from exercise and are able to engage in a 6-month intervention. IMPLICATIONS FOR NURSING PRACTICE: Technology-based approaches could provide nurses with an objective measure of daily life mobility for patients with chronic illness and detect who is responding to rehabilitation.


Assuntos
Atividades Cotidianas , Antagonistas de Androgênios , Sobreviventes de Câncer , Terapia por Exercício , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Idoso , Antagonistas de Androgênios/uso terapêutico , Terapia por Exercício/métodos , Pessoa de Meia-Idade , Qualidade de Vida , Idoso de 80 Anos ou mais
7.
Clin Biomech (Bristol, Avon) ; 113: 106196, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38354515

RESUMO

BACKGROUND: Navigating your environment requires both straight-line gait as well as turning. Gait speed normative values are well established and utilized in determining a person's functional status, however, it has limitations. This study sought to examine whether turning speed declines with age and how it compared to gait speed age-related decline. METHODS: A secondary analysis was performed on 275 community dwelling adults between the ages of 18-88 that performed a timed walking test with an inertial measurement unit on their lumbar spine. Turning speed and walking speed were extracted for each participant. A series of mixed models were compared, and Akaike's Information Criterion was used to determine the best fit model between age and turning speed and age and gait speed. FINDINGS: Turning speed and gait speed normative values were reported for each age decade. A linear model with a random intercept of "Condition" was used to assess the relationship between age and turning speed. The results indicated a significant negative relationship between age and turning speed (B = -0.66, p < 0.001). A spline-fit model determined a significant negative relationship between age and gait speed after the age of 65 (B = -0.0097, p = 0.002). The effect of age on gait speed before age 65 was not significant. INTERPRETATION: Turning speed significantly declines with age in a linear fashion while gait speed begins to decline after age 65. Turning speed may be more responsive to age than gait speed. More research is needed to determine if the decline in turning speed with age is associated with a decline in function.


Assuntos
Equilíbrio Postural , Velocidade de Caminhada , Adulto , Humanos , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Marcha , Caminhada
8.
J Neurol ; 271(7): 3721-3730, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38727734

RESUMO

Older adults, as well as those with certain neurological disorders, may compensate for poor neural control of postural stability by widening their base of foot support while walking. However, the extent to which this wide-based gait improves postural stability or affects postural control strategies has not been explored. People with idiopathic Parkinson's disease (iPD, n = 72), frontal gait disorders (FGD, n = 16), and healthy older adults (n = 32) performed walking trials at their preferred speed over an 8-m-long, instrumented walkway. People with iPD were tested in their OFF medication state. Analyses of covariance were performed to determine the associations between stride width and measures of lateral stability control. People with FGD exhibited a wide-based gait compared to both healthy older adults and iPD. An increased stride width was associated with an increase in lateral margin of stability in FGD. Unlike healthy older adults or iPD, people with FGD did not externally rotate their feet (toe-out angle) or shift their center of pressure laterally to aid lateral dynamic stability during walking but slowed their gait instead to increase stability. By adopting a slow, wide-based gait, people with FGD take advantage of the passive, pendular mechanics of walking.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Equilíbrio Postural , Humanos , Doença de Parkinson/fisiopatologia , Doença de Parkinson/complicações , Equilíbrio Postural/fisiologia , Masculino , Idoso , Feminino , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Pessoa de Meia-Idade , Fenômenos Biomecânicos/fisiologia , Marcha/fisiologia , Caminhada/fisiologia , Idoso de 80 Anos ou mais
9.
Gait Posture ; 113: 130-138, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38879895

RESUMO

BACKGROUND: In daily life tasks of the upper limb, we must make quick corrections with our hands in unstable postural situations. Postural and reaching control mechanisms are involved in the accurate execution of upper-limb tasks. RESEARCH QUESTION: This research aimed to determine the effect of different postural stability conditions on the motor performance of the upper limb in a reaching task with non-static targets. METHODOLOGY: 19 young participants performed a reaching task toward targets that exhibited a change in position (at 200 or 600 ms) in different postural conditions (bipedal-firm, bipedal-foam, and unipedal-foam surface). Performance on the screen (motion time and spatial error), balance (center of pressure displacements, CoP), and index finger movements were recorded during the reaching task. RESULTS: The instability affects the finger kinematic (displacements) and CoP kinematic (displacements, speed, and smoothness) without affecting the performance on the screen (precision and duration). The timing of target change affects the performance on the screen, finger kinematic (speed and smoothness), and CoP kinematic (displacements, speed, and smoothness). SIGNIFICANCE: Postural and reaching control systems enable accurate hand motions in less stable situations, even in reaching tasks with non-static targets. The postural and reaching control systems can protect the end-effector performance during unstable conditions but not during trials with less time to correct the motion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA