Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 53(10): 5987-5999, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31038939

RESUMO

Granular activated carbon (GAC) adsorption is well-established for controlling regulated disinfection byproducts (DBPs), but its effectiveness for unregulated DBPs and DBP-associated toxicity is unclear. In this study, GAC treatment was evaluated at three full-scale chlorination drinking water treatment plants over different GAC service lives for controlling 61 unregulated DBPs, 9 regulated DBPs, and speciated total organic halogen (total organic chlorine, bromine, and iodine). The plants represented a range of impacts, including algal, agricultural, and industrial wastewater. This study represents the most extensive full-scale study of its kind and seeks to address the question of whether GAC can make drinking water safer from a DBP perspective. Overall, GAC was effective for removing DBP precursors and reducing DBP formation and total organic halogen, even after >22 000 bed volumes of treated water. GAC also effectively removed preformed DBPs at plants using prechlorination, including highly toxic iodoacetic acids and haloacetonitriles. However, 7 DBPs (mostly brominated and nitrogenous) increased in formation after GAC treatment. In one plant, an increase in tribromonitromethane had significant impacts on calculated cytotoxicity, which only had 7-17% reduction following GAC. While these DBPs are highly toxic, the total calculated cytotoxicity and genotoxicity for the GAC treated waters for the other two plants was reduced 32-83% (across young-middle-old GAC). Overall, calculated toxicity was reduced post-GAC, with preoxidation allowing further reductions.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Halogenação , Halogênios
2.
Water Res ; 172: 115432, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32004911

RESUMO

Biological activated carbon (BAC) is widely used as a polishing step at full-scale drinking water plants to remove taste and odor compounds and assimilable organic carbon. BAC, especially with pre-ozonation, has been previously studied to control regulated disinfection by-products (DBPs) and DBP precursors. However, most previous studies only include regulated or a limited number of unregulated DBPs. This study explored two full-scale drinking water plants that use pre-chloramination followed by BAC and chloramine as the final disinfectant. While chloramine generally produces lower concentrations of regulated DBPs, it may form increased levels of unregulated nitrogenous and iodinated DBPs. We evaluated 71 DBPs from ten DBP classes including haloacetonitriles, haloacetamides, halonitromethanes, haloacetaldehydes, haloketones, iodinated acetic acids, iodinated trihalomethanes, nitrosamines, trihalomethanes, and haloacetic acids, along with speciated total organic halogen (total organic chlorine, bromine and iodine) across six different BAC filters of increasing age. Most preformed DBPs were well removed by BAC with different ages (i.e., operation times). However, some preformed DBPs were poorly removed or increased following treatment with BAC, including chloroacetaldehyde, dichloronitromethane, bromodichloronitromethane, N-nitrosodimethylamine, dibromochloromethane, tribromomethane, dibromochloroacetic acid, and tribromoacetic acid. Some compounds, including dibromoacetaldehyde, bromochloroacetamide, and dibromoacetamide, were formed only after treatment with BAC. Total organic halogen removal was variable in both plants and increases in TOCl or TOI were observable on one occasion at each plant. While calculated genotoxicity decreased in all filters, decreases in overall DBP formation did not correlate with decreases in calculated cytotoxicity. In three of the six filters, calculated toxicity increased by 4-27%. These results highlight that DBP concentration alone may not always provide an adequate basis for risk assessment.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Carvão Vegetal , Desinfecção , Halogenação , Trialometanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA